2.如圖,在三棱錐S-ABC中,底面是邊長為1的等邊三角形,側(cè)棱長均為2,SO⊥底面ABC,O為垂足,則側(cè)棱SA與底面ABC所成角的余弦值為$\frac{\sqrt{3}}{6}$.

分析 根據(jù)O為底面的中心計算AO,即可得出答案.

解答 解:∵底面是邊長為1的等邊三角形,側(cè)棱長均為2,
∴O為△ABC的中心,
∴AO=$\frac{2}{3}$•$\frac{\sqrt{3}}{2}$•1=$\frac{\sqrt{3}}{3}$,
∵SO⊥平面ABC.
∴∠SAO為側(cè)棱SA與底面ABC所成角.
∴cos∠SAO=$\frac{AO}{SA}$=$\frac{\sqrt{3}}{6}$.
故答案為$\frac{\sqrt{3}}{6}$.

點評 本題考查了正棱錐的結(jié)構(gòu)特征,線面角的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某個服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元),與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系見表:
x3456789
y66697381899091
已知$\sum_{i=1}^{?}$x${\;}_{i}^{2}$=280,$\sum_{i=1}^{?}$y${\;}_{i}^{2}$=45309,$\sum_{i=1}^{?}$xiyi=3487.
(1)求$\overline{x}$,$\overline{y}$;
(2)畫出散點圖;
(3)判斷純利y與每天銷售件數(shù)x之間是否線性相關(guān),如果線性相關(guān),求出回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.以C(4,-6)為圓心,半徑等于4的圓的方程為(x-4)2+(y+6)2=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知隨機(jī)變量X服從兩點分布,E(X)=0.7,則其成功概率為( 。
A.0B.1C.0.3D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖所示,已知A(l,0),把一粒黃豆隨機(jī)投到正方形OABC內(nèi),則黃豆落到陰影區(qū)域內(nèi)的概率是( 。
A.$\frac{5}{6}$B.$\frac{4}{5}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=2x-x2
(1)求x<0時f(x)的解析式;
(2)問是否存在正數(shù)a,b,當(dāng)x∈[a,b]時,g(x)=f(x),且g(x)的值域為[$\frac{a}{2}$,$\frac{2}$]?若存在,求出所有的a,b的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.一個等比數(shù)列的前n項和為Sn=48,前2n項之和S2n=60,則S3n=63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ax2+$\frac{2}{x}$,其中a為實數(shù).
(1)根據(jù)a的不同取值,判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)若a∈(1,3),判斷函數(shù)f(x)在[1,2]上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中是假命題的是( 。
A.?m∈R,使$f(x)=(m-1)•{x^{{m^2}-4m+3}}$是冪函數(shù)
B.?α,β∈R,使cos(α+β)=cosα+cosβ
C.?φ∈R,函數(shù)f(x)=sin(x+φ)都不是偶函數(shù)
D.?a>0,函數(shù)f(x)=ln2x+lnx-a有零點

查看答案和解析>>

同步練習(xí)冊答案