14.已知角α終邊不在坐標(biāo)軸上,試分析$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$可能的值.

分析 根據(jù)象限角的三角函數(shù)的符號,對所求分類討論求值.

解答 解:①當(dāng)角α終邊在第一象限,得到sinα>0,cosα>0,所以$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$=$\frac{sinα}{sinα}+\frac{cosα}{cosα}$=2;
②角α終邊在第二象限,sinα>0,cosα<0,$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$=$\frac{sinα}{sinα}-\frac{cosα}{cosα}$=0;
③角α終邊在第三象限,sinα<0,cosα<0,$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$=-2;
④角α終邊在第四象限,sinα<0,cosα>0,$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$=0;
所以$\frac{|sinα|}{sinα}$+$\frac{|cosα|}{cosα}$可能的值為2,0,-2;

點評 本題考查了三角函數(shù)的化簡求值;關(guān)鍵是明確象限角的三角函數(shù)符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若復(fù)數(shù)z=(cosθ-$\frac{3}{5}$)+(sinθ-$\frac{4}{5}$)i是純虛數(shù),則tan(θ-$\frac{π}{4}$)的值為( 。
A.-7B.-$\frac{1}{7}$C.7D.-7或-$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.小明射擊一次擊中10環(huán)的概率為0.8,則小明連續(xù)射擊3次至少擊中一次10環(huán)的概率為0.992.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.化簡:
(1)cos($\frac{π}{6}$-α)-sin($\frac{π}{3}$-α);
(2)sin15°+tan60°cos15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知不等式組$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,構(gòu)成平面區(qū)域Ω(其中x,y是變量),若目標(biāo)函數(shù)z=ax+2y(a≠0)的最小值為-4,則實數(shù)a的值為(  )
A.-$\frac{4}{3}$B.2C.4D.2或-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在(a+b)n的展開式中,第2項與第6項的二項式系數(shù)相等,則n=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+2cos2x,求函數(shù)f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.l1的傾斜角為60°,l2經(jīng)過點M(1,$\sqrt{3}$),N(-2,-2$\sqrt{3}$),則l1與l2的關(guān)系是平行或重合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知集合A={x|3<x<10},B={x|x2-9x+14<0},C={x|5-m<x<2m}.
(Ⅰ)求A∩B,(∁RA)∪B;
(Ⅱ)若x∈C是x∈(A∩B)的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案