已知,點P(x,y)的坐標滿足,則的取值范圍為   
【答案】分析:作出題中不等式組表示的平面區(qū)域,P(x,y)為內部一點,設A(,),可得向量、的夾角θ∈(],由向量的夾角公式可得=2cosθ,由此結合余弦函數(shù)的單調性即可得到本題的答案.
解答:解:作出不等式組表示的平面區(qū)域,
得到如圖的平面區(qū)域,其中B(-2,0),C(1,
設A(),P(x,y)為區(qū)域內一個動點,向量、的夾角為θ
∵||=,=x+y
∴cosθ===×
∵當P運動到C點時,θ達到最小值;P運動到與x軸負半軸上一點重合時,θ達到最大值
∴∠AOC<θ≤∠AOB,由直線OA、OC的傾斜角分別為、,可得θ∈(,]
由此可得:-≤cosθ<,即-×
∴-,即的取值范圍為[-
故答案為:[-
點評:本題給出二元一次不等式組表示的平面區(qū)域,求式子的取值范圍,著重考查了余弦函數(shù)的單調性、向量的夾角公式和簡單線性規(guī)劃的應用等知識,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)到原點的距離的平方與它到直線l:x=m(m是常數(shù))的距離相等.
(1)求動點P的軌跡方程C;
(2)就m的不同取值討論方程C的圖形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)到定點F(1,0)的距離比它到定直線x=-2的距離小1.
(1)求點P的軌跡C的方程;
(2)在軌跡C上是否存在兩點M、N,使這兩點關于直線l:y=kx+3對稱,若存在,試求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•延慶縣一模)已知動點P(x,y)與一定點F(1,0)的距離和它到一定直線l:x=4的距離之比為
12

(Ⅰ) 求動點P(x,y)的軌跡C的方程;
(Ⅱ)已知直線l':x=my+1交軌跡C于A、B兩點,過點A、B分別作直線l:x=4的垂線,垂足依次為點D、E.連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知,點P(x,y)的坐標滿足
3
x-y<0
x-
3
y+2<0
y≥0
,則
3
x+y
x2+y2
的取值范圍為
[-
3
,
3
[-
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動點P(x,y)與兩定點M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(1)求動點P的軌跡C的形狀;
(2)試根據(jù)λ的取值情況討論軌跡C的形狀;
(3)當λ=-2時,過E(1,0)作兩條互相垂直直線l1、l2,且分別與軌跡C交于A、B兩點,探究直線AB是否過定點?若過定點,請求出定點坐標;否則,說明理由.

查看答案和解析>>

同步練習冊答案