已知雙曲線的一個(gè)焦點(diǎn)為,點(diǎn)位于該雙曲線上,線段的中點(diǎn)坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程為
A. | B. | C. | D. |
B
解析試題分析:設(shè)出雙曲線的方程,據(jù)雙曲線的焦點(diǎn)坐標(biāo)列出三參數(shù)滿足的一個(gè)等式;利用中點(diǎn)坐標(biāo)公式求出p的坐標(biāo),將其坐標(biāo)代入雙曲線的方程,求出三參數(shù)的另一個(gè)等式,解兩個(gè)方程得到參數(shù)的值。解:據(jù)已知條件中的焦點(diǎn)坐標(biāo)判斷出焦點(diǎn)在x軸上,設(shè)雙曲線的方程為∵一個(gè)焦點(diǎn)為(-,0),∴a2+b2=5①,∵線段PF1的中點(diǎn)坐標(biāo)為(0,2),,∴P的坐標(biāo)為(,4)將其代入雙曲線的方程得 ②
解①②得a2=1,b2=4,所以雙曲線的方程為故選B
考點(diǎn):雙曲線的方程
點(diǎn)評:求圓錐曲線常用的方法:待定系數(shù)法、注意雙曲線中三參數(shù)的關(guān)系為:c2=b2+a2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
過雙曲線:的左焦點(diǎn),作圓:的切線,切點(diǎn)為E,延長FE交雙曲線右支于點(diǎn)P,若,則雙曲線的離心率為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且雙曲線的離心率等于,則該雙曲線的方程為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
等軸雙曲線的中心在原點(diǎn),焦點(diǎn)在軸上,與拋物線的準(zhǔn)線交于兩點(diǎn),,則的實(shí)軸長為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,是平面的斜線段,為斜足。若點(diǎn)在平面內(nèi)運(yùn)動,使得的面積為定值,則動點(diǎn)的軌跡是( )
A.圓 | B.橢圓 |
C.一條直線 | D.兩條平行直線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,拋物線的準(zhǔn)線與軸的交點(diǎn)為,點(diǎn)在拋物線上且,則的面積為( )
A.4 | B.8 | C.16 | D.32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知拋物線Cl:y2= 2x的焦點(diǎn)為F1,拋物線C2:y=2x2的焦點(diǎn)為F2,則過F1且與F1F2垂直的直線的一般方程式為
A.2x- y-l=0 | B.2x+ y-1=0 |
C.4x-y-2 =0 | D.4x-3y-2 =0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知F1、F2分別是雙曲線的左、右焦點(diǎn),P為雙曲線右支上的任意一點(diǎn).若,則雙曲線離心率的取值范圍是( )
A.(1,2] | B.[2 +) | C.(1,3] | D.[3,+) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
F1、F2是定點(diǎn),|F1F2|=6,動點(diǎn)M滿足|MF1|+|MF2|=8,則點(diǎn)M的軌跡是( )
A.線段 | B.直線 | C.橢圓 | D.圓 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com