A. | [-1,0] | B. | [-1,2] | C. | [1,2] | D. | [0,2] |
分析 由分段函數(shù)可得當(dāng)x=0時(shí),f(0)=a2,由于f(0)是f(x)的最小值,則(-∞,0]為減區(qū)間,即有a≤0,則有a2≤x+$\frac{1}{x}$+a,x>0恒成立,運(yùn)用基本不等式,即可得到右邊的最小值2+a,解不等式a2≤2+a,即可得到a的取值范圍.
解答 解:由于f(x)=$\left\{\begin{array}{l}{(x+a)^{2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}\right.$,
則當(dāng)x=0時(shí),f(0)=a2,
由于f(0)是f(x)的最小值,
則(-∞,0]為減區(qū)間,即有a≤0,
則有a2≤x+$\frac{1}{x}$+a,x>0恒成立,
由x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,當(dāng)且僅當(dāng)x=1取最小值2,
則a2≤2+a,解得-1≤a≤2.
綜上,a的取值范圍為[-1,0].
故選:A.
點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,考查函數(shù)的單調(diào)性及運(yùn)用,同時(shí)考查基本不等式的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-1,1,2} | B. | {1} | C. | {-1,1} | D. | {-2,-1,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com