精英家教網 > 高中數學 > 題目詳情
16.設函數f(x)是定義在(-∞,0)上的可導函數,其導函數為f′(x),且有2f(x)+xf′(x)>x2,則不等式(x+2016)2f(x+2016)-f(-1)>0的解集為(-∞,-2017).

分析 根據條件,構造函數,利用函數的單調性和導數之間的關系,將不等式進行轉化即可得到結論.

解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
則當x<0時,
得F′(x)<0,即F(x)在(-∞,0)上是減函數,
∴F(x+2016)=(x+2016)2f(x+2016),F(-1)=f(-1),
即不等式等價為F(x+2016)-F(-1)>0,
∵F(x)在(-∞,0)是減函數,
∴由F(x+2016)>F(-1)得,x+2016<-1,
即x<-2017,
故答案為:(-∞,-2017).

點評 本題主要考查不等式的解法,利用條件構造函數,利用函數單調性和導數之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

6.若z∈C,且|z|=1,則|z-i|的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

7.已知(x2+$\frac{k}{x}$)6(k>0)的展開式的常數項為240,則$\int_1^k{\frac{1}{x}}dx$=ln2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知函數f(x)=x2-2x+mlnx(m∈R),$g(x)=(x-\frac{3}{4}){e^x}$.
(Ⅰ)若m=1,求y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)討論函數f(x)的單調性;
(Ⅲ)若f(x)存在兩個極值點x1,x2(x1<x2),求g(x1-x2)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.中石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數據資料見如表:
井號I123456
坐標(x,y)(km)(2,30)(4,40)(5,60)(6,50)(8,70)(1,y)
鉆探深度(km)2456810
出油量(L)407011090160205
(Ⅰ)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(Ⅱ)現準備勘探新井7(1,25),若通過1、3、5、7號井計算出的$\widehatb,\widehata$的值($\widehatb,\widehata$精確到0.01)相比于(Ⅰ)中b,a的值之差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井?
(參考公式和計算結果:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x•\overline y}}{{\sum_{i=1}^n{{x^2}_i}-n{{\overline x}^2}}},\widehata=\overline y-\widehatb\overline x,\sum_{i=1}^4{{x^2}_{2i-1}=94,}\sum_{i=1}^4{{x_{2i-1}}{y_{2i-1}}=945}$)
(Ⅲ)設出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質井的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.設D為不等式組$\left\{{\begin{array}{l}{x+y≤1}\\{2x-y≥-1}\\{x-2y≤1}\end{array}}\right.$,表示的平面區(qū)域,點B(a,b)為第一象限內一點,若對于區(qū)域D內的任一點A(x,y)都有$\overrightarrow{OA}•\overrightarrow{OB}≤1$成立,則a+b的最大值等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.已知P是橢圓$\frac{x^2}{25}+\frac{y^2}{9}=1$上任意一點,過橢圓的右頂點A和上頂點B分別作x軸和y軸的垂線,兩垂線交于點C,過P作AC,BC的平行線交BC于點M,交AC于點N,交AB于點D,E,矩形PMCN的面積是S1,三角形PDE的面積是S2,則$\frac{{2{S_1}}}{S_2}$=(  )
A.2B.1C.$\frac{8}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.不等式($\frac{1}{2}$-x)($\frac{1}{3}$-x)>0的解集是( 。
A.{x|$\frac{1}{3}$<x<$\frac{1}{2}$}B.{x|x>$\frac{1}{2}$}C.{x|x<$\frac{1}{3}$}D.{x|x<$\frac{1}{3}$或x>$\frac{1}{2}$}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知F1,F2為橢圓的兩個焦點,以F1為圓心,且經過橢圓中心的圓與橢圓有一個公共點為P,若PF2恰好與圓F1相切,則該橢圓的離心率為$\sqrt{3}$-1.

查看答案和解析>>

同步練習冊答案