分析 根據條件,構造函數,利用函數的單調性和導數之間的關系,將不等式進行轉化即可得到結論.
解答 解:由2f(x)+xf′(x)>x2,(x<0),
得:2xf(x)+x2f′(x)<x3,
即[x2f(x)]′<x3<0,
令F(x)=x2f(x),
則當x<0時,
得F′(x)<0,即F(x)在(-∞,0)上是減函數,
∴F(x+2016)=(x+2016)2f(x+2016),F(-1)=f(-1),
即不等式等價為F(x+2016)-F(-1)>0,
∵F(x)在(-∞,0)是減函數,
∴由F(x+2016)>F(-1)得,x+2016<-1,
即x<-2017,
故答案為:(-∞,-2017).
點評 本題主要考查不等式的解法,利用條件構造函數,利用函數單調性和導數之間的關系是解決本題的關鍵.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
井號I | 1 | 2 | 3 | 4 | 5 | 6 |
坐標(x,y)(km) | (2,30) | (4,40) | (5,60) | (6,50) | (8,70) | (1,y) |
鉆探深度(km) | 2 | 4 | 5 | 6 | 8 | 10 |
出油量(L) | 40 | 70 | 110 | 90 | 160 | 205 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{8}{3}$ | D. | $\frac{8}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|$\frac{1}{3}$<x<$\frac{1}{2}$} | B. | {x|x>$\frac{1}{2}$} | C. | {x|x<$\frac{1}{3}$} | D. | {x|x<$\frac{1}{3}$或x>$\frac{1}{2}$} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com