分析 (Ⅰ) 由題意可得每位乘客在第2層下電梯的概率都是$\frac{1}{3}$,由此利用對(duì)立事件概率計(jì)算公式能求出這4位乘客中至少有一名乘客在第2層下電梯的概率.
(Ⅱ) X的可能取值為0,1,2,3,4,且$X~B(4,\frac{1}{3})$,由此能求出X的分布列和數(shù)學(xué)期望及方差.
解答 解:(Ⅰ) 設(shè)4位乘客中至少有一名乘客在第2層下電梯的事件為A,
由題意可得每位乘客在第2層下電梯的概率都是$\frac{1}{3}$,
則$P(A)=1-P(\overline A)=1-{({\frac{2}{3}})^4}=\frac{65}{81}$. ….(4分)
(Ⅱ) X的可能取值為0,1,2,3,4,
由題意可得每個(gè)人在第4層下電梯的概率均為$\frac{1}{3}$,且每個(gè)人下電梯互不影響,
所以,$X~B(4,\frac{1}{3})$,
P(X=0)=${C}_{4}^{0}(\frac{2}{3})^{4}$=$\frac{16}{81}$,
P(X=1)=${C}_{4}^{1}(\frac{1}{3})(\frac{2}{3})^{3}$=$\frac{32}{81}$,
P(X=2)=${C}_{4}^{2}(\frac{1}{3})^{2}(\frac{2}{3})^{2}$=$\frac{24}{81}$,
P(X=3)=${C}_{4}^{3}(\frac{1}{3})^{3}(\frac{2}{3})$=$\frac{8}{81}$,
P(X=4)=${C}_{4}^{4}(\frac{1}{3})^{4}$=$\frac{1}{81}$,
X的分布列為:
X | 0 | 1 | 2 | 3 | 4 |
P | $\frac{16}{81}$ | $\frac{32}{81}$ | $\frac{24}{81}$ | $\frac{8}{81}$ | $\frac{1}{81}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意二項(xiàng)分布的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2<a≤1 | B. | -2≤a<1 | C. | 1≤a<2 | D. | 1<a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,+∞) | B. | (2,+∞)∪{-3} | C. | [-3,∞) | D. | (-∞,-3] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com