一個(gè)圓錐被過(guò)其頂點(diǎn)的一個(gè)平面截去了較少的一部分幾何體,余下的幾何體的三視圖如圖,則余下部分的幾何體的體積為( 。
A、
16π
9
B、
16π
9
+
2
3
3
C、
9
+
3
3
D、
16π
3
+2
3
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:由三視圖求出圓錐母線(xiàn),高,底面半徑.進(jìn)而求出錐體的底面積,代入錐體體積公式,可得答案.
解答: 解:由已知中的三視圖,圓錐母線(xiàn)l=
5
2
+(
2
3
2
)2
=2
2
,圓錐的高h(yuǎn)=
5
2
-12
=2,
圓錐底面半徑為r=
l2-h2
=2,
 截去的底面弧的圓心角為120°,截去的面積是底面圓面積的
2
3
,
底面剩余部分為S=
2
3
πr2+
1
2
r2
sin120°=
8
3
π+
3

故幾何體的體積為:V=
1
3
Sh=
1
3
×(
8
3
π+
3
)×2=
16π
9
+
2
3
3

故選:B
點(diǎn)評(píng):本題考查幾何體體積計(jì)算.本題關(guān)鍵是弄清幾何體的結(jié)構(gòu)特征,是易錯(cuò)之處.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x2+ax+2a≥0在R上恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)在區(qū)間[-
6
,
π
6
]的端點(diǎn)上恰取相鄰一個(gè)最大值點(diǎn)和一個(gè)最小值點(diǎn),則
(1)ω的值為
 
;
(2)在x=-
π
3
,x=
π
6
,y=1和x軸圍成的矩形區(qū)域里擲一小球,小球恰好落在函數(shù)f(x)=sin(ωx+
π
3
)(x∈[-
π
3
,
π
6
])與x軸圍成的區(qū)域內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2
x
2
+sinx.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,π]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)x,y滿(mǎn)足條件
1
2x+1
+
1
y+1
=
4
7
,則xy的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

樣本(x1,x2,…,xn)的平均數(shù)為x,樣本(y1,y2,…,yn)的平均數(shù)為y(y≠x),樣本(x1,x2,…,xn,y1,y2,…,yn)的平均數(shù)z=λx+μy,若直線(xiàn)l:(λ+2)x-(1+2μ)y+1-3λ=0,則下列敘述不正確的有
①直線(xiàn)l恒過(guò)定點(diǎn)(1,1);
②直線(xiàn)l與圓。▁-1)2+(y-1)2=4相交;
③直線(xiàn)l到原點(diǎn)的最大距離為
2
;
④直線(xiàn)l與直線(xiàn)l′:(2λ-3)x-(3-μ)y=0垂直.(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面的程序框圖,輸出的結(jié)果為( 。
A、1B、2C、4D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)平面內(nèi),復(fù)數(shù)z=
2+i
i2013
,則復(fù)數(shù)z的共軛復(fù)數(shù)
.
z
對(duì)應(yīng)的點(diǎn)的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn),G分別是線(xiàn)段B1B,AB和A1C上的動(dòng)點(diǎn),觀察直線(xiàn)CE與D1F,CE與D1G.給出下列結(jié)論:
①對(duì)于任意給定的點(diǎn)E,存在點(diǎn)F,使得D1F⊥CE;
②對(duì)于任意給定的點(diǎn)F,存在點(diǎn)E,使得CE⊥D1F;
③對(duì)于任意給定的點(diǎn)E,存在點(diǎn)G,使得D1G⊥CE;
④對(duì)于任意給定的點(diǎn)G,存在點(diǎn)E,使得CE⊥D1G.
其中正確結(jié)論的序號(hào)是( 。
A、①③B、①④C、②③D、②④

查看答案和解析>>

同步練習(xí)冊(cè)答案