如圖,角α(α∈(
π
6
π
2
))的終邊交單位圓于點A,將角α的終邊按逆時針方向旋轉(zhuǎn)
π
4
,交單位圓于點B.記A(x1,y1),B(x2,y2).
(Ⅰ)若x1=
3
5
,求x2的值;
(Ⅱ)過點A、B分別作x軸的垂線,垂足依次為C、D,記△AOC、△BOD的面積分別為S1、S2,若S1=
3
S2,求角α的值.
考點:正弦定理
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)先根據(jù)三角函數(shù)的定義分別表示出x1,y1和x2,y2,進而根據(jù)x1的值求得sinα和cosα的值,最后利用兩角和公式求得x2的值;
(Ⅱ)用三角形面積公式分別表示出△AOC、△BOD的面積根據(jù)已知關(guān)系,求得α的值.
解答: 解:如圖,由三角函數(shù)的定義知:

x1=cosα,y1=sinα,x2=cos(α+
π
4
),y2=sin(α+
π
4
)

(Ⅰ)∵x1=cosα=
3
5

sinα=
4
5
,
x2=cos(α+
π
4
)=cosαcos
π
4
-sinαsin
π
4
=
3
5
×
2
2
-
4
5
×
2
2
=-
2
10

(Ⅱ)S1=
1
2
|OC|•|AC|=
1
2
|cosα•sinα|=
1
4
|sin2α|
S2=
1
2
|OD|•|BD|=
1
2
|cos(α+
π
4
)sin(α+
π
4
)=
1
4
|cos2α|
,
S1=
3
S2
,
|sin2α|=
3
|cos2α|⇒|tan2α|=
3

π
6
<α<
π
2
,
π
3
<2α<π

2α=
3
⇒α=
π
3
點評:本題主要考查了三角函數(shù)的定義和正弦定理的應(yīng)用.注重了對學(xué)生基礎(chǔ)知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
px2+2
q+x
是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),f(2)=5.
(1)求p、q的值;
(2)求f(x)的值域;
(3)若方程f(x)=a在區(qū)間[
1
2
,3]上恒有兩個不同的實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC⊥底面ABCD,∠ABC=45°,AB=SA=SB=2.
(1)證明:SA⊥BC;
(2)求點B到平面SAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是正方形,PA⊥面ABCD,且PA=AB,E,F(xiàn)是側(cè)棱PD,PC的中點.
(1)求證EF∥平面PAB;
(2)求證平面PBD⊥平面PAC;
(3)求直線PC與底面ABCD所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下四個式子的值都等于同一個常數(shù).
(1)sin212°+sin248°+sin12°sin48°
(2)sin215°+sin245°+sin15°sin45°
(3)sin2(-12°)+sin272°+sin(-12°)sin72°
(4)sin2(-15°)+sin275°+sin(-15°)sin75°
(Ⅰ)試從上述四個式子中選擇一個,求出這個常數(shù)
(Ⅱ) 根據(jù)(Ⅰ)的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣成三角恒等式,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
(a∈R)
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)若f(x)≤2x+1對于x∈[1,+∞)恒成立,求實數(shù)a的取值范圍.
(3)若g(x)=[f(x)-2a]x在[1,2]的最小值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),x∈R,
(1)若f(-1)=0,且函數(shù)f(x)的值域為[0,+∞),求f(x)的表達式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)F(x)=
f(x)(x>0)
-f(x)(x<0)
,m>0,n<0,m+n>0,a>0且b=0,判斷F(m)+F(n)能否大于零?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

記Sk=1k+2k+3k+…+nk(n∈N*),當(dāng)k=1,2,3,…時,觀察下列等式:
S1=
1
2
n2+
1
2
n
S2=
1
3
n3+
1
2
n2+
1
6
n
S3=
1
4
n4+
1
2
n3+
1
4
n2
S4=
1
5
n5+
1
2
n4+An3-
1
30
n
S5=
1
6
n6+
1
2
n5+
5
12
n4+Bn2
…可以推測,A-B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,E為AD的中點,M是棱PC的中點,PA=PD=2,BC=
1
2
AD=1,CD=
3

(Ⅰ)求證:PE⊥平面ABCD;
(Ⅱ)求直線BM與平面ABCD所成角的正切值;
(Ⅲ)求直線BM與CD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案