(本小題滿分13分)
已知是定義在上的奇函數(shù),當時
(1)求的解析式;
(2)是否存在實數(shù),使得當的最小值是4?如果存在,求出的值;如果不存在,請說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知的圖像在點處的切線與直線平行.
(1)求a,b滿足的關系式;
(2)若上恒成立,求a的取值范圍;
(3)證明: ()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)為奇函數(shù),且在處取得極大值2.
(1)求函數(shù)的解析式;
(2)記,求函數(shù)的單調區(qū)間。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
如圖,已知曲線與曲線交于點.直線與曲線分別相交于點.
(Ⅰ)寫出四邊形的面積與的函數(shù)關系;
(Ⅱ)討論的單調性,并求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)已知函數(shù)在上為增函數(shù),且,為常數(shù),.
(Ⅰ)求的值;
(Ⅱ)若在上為單調函數(shù),求m的取值范圍;
(Ⅲ)設,若在上至少存在一個,使得成立,求的m取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)=。
(1)對于任意實數(shù)x,f’(x)m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個實根,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)對于函數(shù),若存在,使成立,則稱為的不動點。如果函數(shù)有且僅有兩個不動點、,且
。
(1)試求函數(shù)的單調區(qū)間;
(2)已知各項均為負的數(shù)列滿足,求證:;
(3)設,為數(shù)列的前項和,求證:。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com