【題目】數(shù)列{an}與{bn}滿足:①a1=a<0,b1=b>0,②當(dāng)k≥2時,若ak1+bk1≥0,則ak=ak1 , bk= ;若ak1+bk1<0,則ak= ,bk=bk1
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)設(shè)Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有bk1>bk , 求n的最大值(用a,b表示).

【答案】解:(Ⅰ)a2=﹣1,b2=0,a3= ,b3=0;
(Ⅱ)∵ = , = ,
∴無論是ak1+bk1≥0,還是ak1+bk1<0,都有bk﹣ak= ,
即{bk﹣ak}是以b1﹣a1=b﹣a為首項, 為公比的等比數(shù)列,
所以Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an)=
(Ⅲ)∵bk1>bk , 及數(shù)列{an}與{bn}滿足的關(guān)系,
∴ak1+bk1≥0,∴ak=ak1 ,
即對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有ak=a,
由(Ⅱ)知bk﹣ak= ,∴bk=a+
所以ak1+bk1= ,解得 ,
所以n的最大值為不超過 的最大整數(shù)
【解析】(Ⅰ)由題意可直接寫出答案;(Ⅱ)分情況計算bk﹣ak , 得{bk﹣ak}是以b1﹣a1=b﹣a為首項, 為公比的等比數(shù)列,從而可得Sn;(Ⅲ)由bk1>bk , 數(shù)列{an}與{bn}滿足的關(guān)系倒推出對任意正整數(shù)k,當(dāng)2≤k≤n時,恒有ak=a,結(jié)合(Ⅱ)知 ,解之即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在班級活動中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學(xué)式,結(jié)果用數(shù)字作答)

(1)三名女生不能相鄰,有多少種不同的站法?

(2)四名男生相鄰有多少種不同的排法?

(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?

(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學(xué)身高互不相等)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinωxcosωx+2 sin2ωx﹣ (ω>0)的最小正周期為π.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)將函數(shù)f(x)的圖象向左平移 個單位長度,再向上平移1個單位長度,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)在 上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)解不等式:

(2)有4名男生和3名女生

i)選出4人去參加座談會,如果3人中必須既有男生又有女生,有多少種選法?

ii)7人排成一排,甲乙二人之間恰好有2個人,有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xiyi)(i=12,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過樣本點的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= lnxx,其中a>0.

(1)f(x)(0,+∞)上存在極值點,求a的取值范圍;

(2)設(shè)a(1,e],當(dāng)x1(0,1),x2(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=e|lnx|(e為自然對數(shù)的底數(shù)).若x1≠x2且f(x1)=f(x2),則下列結(jié)論一定不成立的是(
A.x2f(x1)>1
B.x2f(x1)=1
C.x2f(x1)<1
D.x2f(x1)<x1f(x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列兩個命題: 函數(shù)在[2,+∞)單調(diào)遞增; 關(guān)于的不等式的解集為.若為真命題, 為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,AD= ,P矩形內(nèi)的一點,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值為

查看答案和解析>>

同步練習(xí)冊答案