8.函數(shù)y=$\frac{x-2}{2x-3}$的值域為( 。
A.(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)B.(-∞,1)∪(1,+∞)C.(-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,+∞)D.($\frac{1}{2}$,+∞)

分析 分離常數(shù)得到$y=\frac{1}{2}-\frac{1}{2(2x-3)}$,從而由$\frac{1}{2(2x-3)}≠0$即可得出y的范圍,即得出該函數(shù)的值域.

解答 解:$y=\frac{x-2}{2x-3}=\frac{\frac{1}{2}(2x-3)+\frac{3}{2}-2}{2x-3}$=$\frac{1}{2}-\frac{1}{2(2x-3)}$;
$\frac{1}{2(2x-3)}≠0$;
∴$y≠\frac{1}{2}$;
∴該函數(shù)值域為$(-∞,\frac{1}{2})∪(\frac{1}{2},+∞)$.
故選A.

點評 考查函數(shù)值域的概念及求法,分離常數(shù)法的運用,熟悉反比例函數(shù)的值域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=alnx+blog2x+1,f(2016)=3,則f($\frac{1}{2016}$)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知f(x)=ax3+bsinx+9(ab≠0),且f(-2)=3,則f(2)=15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.雙曲線和橢圓25x2+9y2=225有公共焦點,它們的離心率之和為2,則雙曲線的標(biāo)準(zhǔn)方程為$\frac{{y}^{2}}{\frac{100}{9}}-\frac{{x}^{2}}{\frac{44}{9}}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果開口向上的二次函數(shù)f(t)對任意的t有f(2+t)=f(2-t),那么( 。
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等式x2+ax+1≥0對于一切x∈(2,3)成立,則a的取值范圍是( 。
A.a≤0B.a≥-$\frac{5}{2}$
C.-$\frac{5}{2}$≤a≤0D.-3≤a≤0
E.以上結(jié)論均不正確   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等差數(shù)列{an}的前n項和為Sn,若S3=9,S6=36,則S9=( 。
A.63B.45C.43D.81

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=ax3+bx2+cx+d是定義在實數(shù)集R上的函數(shù),其圖象與x軸交于A,B,C三點,若B點坐標(biāo)為(2,0),且f(x)在[-1,0]和[4,5]上有相同的單調(diào)性,在[0,2]和[4,5]上有相反的單調(diào)性.
(1)求c的值,寫出極值點橫坐標(biāo)的取值范圍(不需要證明);
(2)在函數(shù)f(x)的圖象上是否存在一點M(x0,y0),使曲線y=ax3+bx2+cx+d在點M處的切線斜率為3b?若存在,求出點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,點P在橢圓上,且$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,|F1F2|=4,|PF1|=$\frac{\sqrt{5}}{5}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)經(jīng)過點P(3,0)的直線l和橢圓C交于A,B兩個不同的點,設(shè)AB的中點為Q(x0,y0),Q(x0,y0),求x0+y0的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案