【題目】已知為圓上一點(diǎn),過(guò)點(diǎn)軸的垂線交軸于點(diǎn),點(diǎn)滿足

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)設(shè)為直線上一點(diǎn),為坐標(biāo)原點(diǎn),且,求面積的最小值.

【答案】(1) (2)

【解析】

1)設(shè)出A、P點(diǎn)坐標(biāo),用P點(diǎn)坐標(biāo)表示A點(diǎn)坐標(biāo),然后代入圓方程,從而求出P點(diǎn)的軌跡;

2)設(shè)出P點(diǎn)坐標(biāo),根據(jù)斜率存在與否進(jìn)行分類討論,當(dāng)斜率不存在時(shí),求出面積的值,當(dāng)斜率存在時(shí),利用點(diǎn)P坐標(biāo)表示的面積,減元后再利用函數(shù)單調(diào)性求出最值,最后總結(jié)出最值.

解:(1) 設(shè),

由題意得:,

,可得點(diǎn)的中點(diǎn),

,

所以,

又因?yàn)辄c(diǎn)在圓上,

所以得,

故動(dòng)點(diǎn)的軌跡方程為.

(2)設(shè),則,且,

當(dāng)時(shí),,此時(shí);

當(dāng)時(shí),

因?yàn)?/span>,

,

,

,

①,

代入①

設(shè)

因?yàn)?/span>恒成立,

上是減函數(shù),

當(dāng)時(shí)有最小值,即,

綜上:的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,錯(cuò)誤命題是

A. ,則的逆命題為真

B. 線性回歸直線必過(guò)樣本點(diǎn)的中心

C. 在平面直角坐標(biāo)系中到點(diǎn)的距離的和為的點(diǎn)的軌跡為橢圓

D. 在銳角中,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】50名學(xué)生調(diào)查對(duì)A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對(duì)A、B都不贊成的學(xué)生數(shù)比對(duì)AB都贊成的學(xué)生數(shù)的三分之一多1. 問(wèn)對(duì)A、B都贊成的學(xué)生有____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為迎接“五一國(guó)際勞動(dòng)節(jié)”,某商場(chǎng)規(guī)定購(gòu)買超過(guò)6000元商品的顧客可以參與抽獎(jiǎng)活動(dòng)現(xiàn)有甲品牌和乙品牌的掃地機(jī)器人作為獎(jiǎng)品,從這兩種品牌的掃地機(jī)器人中各隨機(jī)抽取6臺(tái)檢測(cè)它們充滿電后的工作時(shí)長(zhǎng)相關(guān)數(shù)據(jù)見(jiàn)下表(工作時(shí)長(zhǎng)單位:分)

機(jī)器序號(hào)

1

2

3

4

5

6

甲品牌工作時(shí)長(zhǎng)/

220

180

210

220

200

230

乙品牌工作時(shí)長(zhǎng)/

200

190

240

230

220

210

1)根據(jù)所提供的數(shù)據(jù),計(jì)算抽取的甲品牌的掃地機(jī)器人充滿電后工作時(shí)長(zhǎng)的平均數(shù)與方差;

2)從乙品牌被抽取的6臺(tái)掃地機(jī)器人中隨機(jī)抽出3臺(tái)掃地機(jī)器人,記抽出的掃地機(jī)器人充滿電后工作時(shí)長(zhǎng)不低于220分鐘的臺(tái)數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程(為參數(shù)),直線的參數(shù)方程(為參數(shù)).

1)求曲線在直角坐標(biāo)系中的普通方程;

2)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線截直線所得線段的中點(diǎn)極坐標(biāo)為時(shí),求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富學(xué)生的課外文化生活,某中學(xué)積極探索開(kāi)展課外文體活動(dòng)的新途徑及新形式,取得了良好的效果.為了調(diào)查學(xué)生的學(xué)習(xí)積極性與參加文體活動(dòng)是否有關(guān),學(xué)校對(duì)200名學(xué)生做了問(wèn)卷調(diào)查,列聯(lián)表如下:

參加文體活動(dòng)

不參加文體活動(dòng)

合計(jì)

學(xué)習(xí)積極性高

80

學(xué)習(xí)積極性不高

60

合計(jì)

200

已知在全部200人中隨機(jī)抽取1人,抽到學(xué)習(xí)積極性不高的學(xué)生的概率為.

1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

2)是否有99.9%的把握認(rèn)為學(xué)習(xí)積極性高與參加文體活動(dòng)有關(guān)?請(qǐng)說(shuō)明你的理由;

3)若從不參加文體活動(dòng)的同學(xué)中按照分層抽樣的方法選取5人,再?gòu)乃x出的5人中隨機(jī)選取2人,求至少有1人學(xué)習(xí)積極性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱側(cè)面

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為,過(guò)點(diǎn)且斜率為的直線與軸交于點(diǎn),與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

1)求點(diǎn)的坐標(biāo);

2)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn),若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿足,數(shù)列數(shù)列,記.

1)寫出一個(gè)滿足,且數(shù)列;

2)若,,證明:數(shù)列是遞增數(shù)列的充要條件是;

3)對(duì)任意給定的整數(shù),是否存在首項(xiàng)為0數(shù)列,使得?如果存在,寫出一個(gè)滿足條件的數(shù)列;如果不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案