如圖,平面平面,四邊形為矩形,.為的中點(diǎn),.(1)求證:;(2)若與平面所成的角為,求二面角的余弦值.
(1)證明見解析;(2).
【解析】
試題分析:(1)本小題證明的是線線垂直,把問題轉(zhuǎn)化為證明線面垂直(線面垂直線線垂直),即證平面,從而有;(2)本小題可從傳統(tǒng)幾何方法及空間向量方法入手,法一:先證,為等邊三角形,取的中點(diǎn),連結(jié),,可證得為二面角的平面角,在三角形FMP中用余弦定理的推論完成求值;法二:利用空間向量解決面面角問題,只需找到這兩個(gè)面的法向量,利用公式完成計(jì)算即可,但要注意本題面面角為鈍二面角.
試題解析:(1)證明:連結(jié),因,是的中點(diǎn),故.又因平面平面,故平面,于是.又,所以平面,所以,又因,故平面,所以.
(2)解法一:由(1),得.不妨設(shè),.因為直線與平面所成的角,故,所以,為等邊三角形.設(shè),則,分別為,的中點(diǎn),也是等邊三角形.取的中點(diǎn),連結(jié),,則,,所以為二面角的平面角.在中,,,故,即二面角的余弦值為.
解法二:取的中點(diǎn),以為原點(diǎn),,,所在的直線分別為,,軸建立空間直角坐標(biāo)系.不妨設(shè),,則,,,,從而,.
設(shè)平面的法向量為,由,得,可取.同理,可取平面的一個(gè)法向量為 .于是,易見二面角的平面角與互補(bǔ),所以二面角的余弦值為.
考點(diǎn):證明線線垂直問題(線面垂直線線垂直),求二面角的余弦值(可用尋找其二面角的平面角,也可用空間向量知識(shí)完成).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
執(zhí)行如圖所示的程序框圖,輸出的S值為( )
A.2 B.4 C.8 D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省金華十校高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知兩條不同的直線m、n,兩個(gè)不同的平面a、β,則下列命題中的真命題是( 。
A.若m⊥a,n⊥β,a⊥β,則m⊥n B.若m⊥a,n∥β,a⊥β,則m⊥n
C.若m∥a,n∥β,a∥β,則m∥n D.若m∥a,n⊥β,a⊥β,則m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省紹興市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
球O為邊長為2的正方體ABCD-A1B1C1D1的內(nèi)切球,P為球O的球面上動(dòng)點(diǎn),M為B1C1中點(diǎn),,則點(diǎn)P的軌跡周長為( ).
A . B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省紹興市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
已知向量滿足,則( ).
A.0 B.1 C.2 D..Co
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省紹興市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
沿對(duì)角線AC 將正方形A B C D折成直二面角后,A B與C D所在的直線所成的角等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省紹興市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)的圖象大致是( ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:填空題
直線與坐標(biāo)軸圍成的三角形的面積為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
一個(gè)動(dòng)圓與定圓:相內(nèi)切,且與定直線:相切,則此動(dòng)圓的圓心的軌跡方程是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com