8.已知直線l1的方程為3x+4y-7=0,直線l2的方程為6x+8y+1=0,則直線l1與l2的距離為$\frac{3}{2}$.

分析 首先使直線l1方程中x,y的系數(shù)與直線l2方程的系數(shù)統(tǒng)一,再根據(jù)兩條平行線間的距離公式可得答案.

解答 解:由題意可得:直線l1的方程為6x+8y-14=0,
因?yàn)橹本l2的方程為6x+8y+1=0,
所以根據(jù)兩條平行線間的距離公式可得:直線l1與l2的距離為$\frac{|-14-1|}{\sqrt{36+64}}$=$\frac{3}{2}$.
故答案為$\frac{3}{2}$.

點(diǎn)評 本題主要考查兩條平行線之間的距離公式,在利用公式解題時(shí)一定要使兩條直線方程中x,y的系數(shù)相同,此題也可以在其中一條直線上取一點(diǎn),根據(jù)點(diǎn)到直線的距離公式求此點(diǎn)到另一條直線的距離,即可得到兩條平行線之間的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:?x∈R,x2-2(m-3)x+1=0,命題q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)m的取值范圍
(2)若p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)復(fù)數(shù)z滿足(z+i)i=-3+4i(i為虛數(shù)單位),則z的模為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程2x=x2有3個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知兩個(gè)不同的平面α、β和兩條不重合的直線,m、n,有下列四個(gè)命題
①若m∥n,m⊥α,則n⊥α②若m⊥α,m⊥β,則α∥β
③若m⊥α,n∥α,則m⊥n④若m∥α,m∥β,α∩β=n,則m∥n
其中正確命題的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(n)=1•n+2•(n-1)+3•(n-2)+…+n•1(n∈N*),那么f(n+1)-f(n)=$\frac{(n+1)(n+2)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.過雙曲線$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦點(diǎn)F作直線l交雙曲線于A?B兩點(diǎn),若|AB|=5,則這樣的直線l有( 。
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在多面體EF-ABC中,△ABC是邊長為2的等邊三角形,O為BC的中點(diǎn),EF∥AO,EA=EC=EF=$\sqrt{3}$.
(1)若平面ABC∩平面BEF=l,證明:EF∥l;
(2)求證:AC⊥BE;
(3)若BE=$\sqrt{5}$,EO=$\sqrt{3}$,求點(diǎn)B到平面AFO的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=$\frac{2x+1}{x+1}$的對稱中心為(-1,2).

查看答案和解析>>

同步練習(xí)冊答案