如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標(biāo)軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.

(1) 若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.

① 求證:直線AM與△ABE的外接圓相切;

② 求橢圓的標(biāo)準(zhǔn)方程;

(2) 設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

 


 (1) 證明:① 依題意:A(2,2),M(4,1),E(0,-2),∴  =(2,-1),=(-2,-4),∴  =0,∴  AM⊥AE.

∵  AE為Rt△ABE外接圓直徑,∴  直線AM與△ABE的外接圓相切.

② 解:由解得橢圓標(biāo)準(zhǔn)方程為=1.

(2) 證明:設(shè)正方形ABCD的邊長為2s,正方形MNPQ的邊長為2t,則A(s,s),M(s+2t,t),代入橢圓方程=1,

∴  2e2-k=2為定值.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:


 已知拋物線y2=2px(p≠0)上存在關(guān)于直線x+y=1對稱的相異兩點,則實數(shù)p的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


在平面直角坐標(biāo)系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 F1,F(xiàn)2是橢圓+y2=1的左右焦點,點P在橢圓上運動.則的最大值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知橢圓C:=1(a>b>0),點A、B分別是橢圓C的左頂點和上頂點,直線AB與圓G: (c是橢圓的半焦距)相離,P是直線AB上一動點,過點P作圓G的兩切線,切點分別為M、N.

(1) 若橢圓C經(jīng)過兩點,求橢圓C的方程;

(2) 當(dāng)c為定值時,求證:直線MN經(jīng)過一定點E,并求的值(O是坐標(biāo)原點);

(3) 若存在點P使得△PMN為正三角形,試求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當(dāng)取最小值時,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


已知雙曲線=1(a>0,b>0)的兩條漸近線方程為y=±x,若頂點到漸近線的距離為1,求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


觀察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般結(jié)論是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:


 用數(shù)學(xué)歸納法證明:

查看答案和解析>>

同步練習(xí)冊答案