18.將函數(shù)$y=sin(2x-\frac{π}{6})$的圖象上所有點(diǎn)的橫坐標(biāo)向左平移$\frac{π}{12}$個(gè)單位,可得函數(shù)y=sin2x的圖象.

分析 根據(jù)正弦函數(shù)圖象的平移法則,即可得出正確的答案.

解答 解:函數(shù)$y=sin(2x-\frac{π}{6})$=sin2(x-$\frac{π}{12}$),
將函數(shù)y的圖象上所有點(diǎn)的橫坐標(biāo)向左平移$\frac{π}{12}$個(gè)單位,
可得函數(shù)y=sin2x的圖象.
故答案為:左,$\frac{π}{12}$.

點(diǎn)評(píng) 本題考查了正弦函數(shù)圖象平移法則的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,直線x=a(a>0)與曲線y=x2及x軸所圍成的封閉圖形的面積為$\frac{8}{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,M為AB的中點(diǎn),$\overrightarrow{AN}=2\overrightarrow{NC}$,若$\overrightarrow{MN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若冪函數(shù)f(x)過(guò)點(diǎn)(2,8),則滿足不等式 f(a-3)>f(1-a) 的實(shí)數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某幾何體三視圖如圖所示,則該幾何體的表面積為( 。
A.8+2πB.16+2πC.20+2πD.16+π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知直線l的斜率為-1,則直線l的傾斜角為( 。
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.將正方形ABCD沿對(duì)角線BD折成直二面角A-BD-C,則二面角A-CD-B的余弦值為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列選項(xiàng)中,說(shuō)法正確的個(gè)數(shù)是( 。
(1)命題“?x0∈R,${x_0}^2-{x_0}≤0$”的否定為“?x∈R,x2-x>0”;
(2)命題“在△ABC中,A>30°,則$sinA>\frac{1}{2}$”的逆否命題為真命題;
(3)設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件;
(4)若統(tǒng)計(jì)數(shù)據(jù)x1,x2,…,xn的方差為1,則2x1,2x2,…,2xn的方差為2;
(5)若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)絕對(duì)值越接近1.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)圓x2+y2+4x-32=0的圓心為A,直線l過(guò)點(diǎn)B(2,0)且與x軸不重合,l交圓A于C,D兩點(diǎn),過(guò)B作AC的平行線交AD于點(diǎn)E.
(1)證明|EA|+|EB|為定值,并寫(xiě)出點(diǎn)E的軌跡方程;
(2)設(shè)點(diǎn)E的軌跡為曲線C1,直線l交C1于M,N兩點(diǎn),過(guò)B且與l垂直的直線與圓A交于P,Q兩點(diǎn),求四邊形MPNQ面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案