2.矩形ABCD中,AB=2,AD=1,P為矩形內(nèi)部一點(diǎn),且AP=1.設(shè)∠PAB=θ,$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),則2λ+$\sqrt{3}$μ取得最大值時(shí),角θ的值為$\frac{π}{3}$.

分析 可作出圖形,根據(jù)題意可知λ,μ>0,根據(jù)條件對$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$兩邊平方,進(jìn)行數(shù)量積的運(yùn)算化簡,利用三角代換以及兩角和與差的三角函數(shù),從而便可得出2λ+$\sqrt{3}$μ的最大值.

解答 解:如圖,依題意知,λ>0,μ>0;
根據(jù)條件,
1=$\overrightarrow{AP}$22$\overrightarrow{AB}$2+2λμ$\overrightarrow{AB}$•$\overrightarrow{AD}$+μ2$\overrightarrow{AD}$2
=4λ22.令λ=$\frac{1}{2}cosθ$,μ=sinθ.
∴2λ+$\sqrt{3}$μ=cosθ+$\sqrt{3}$sinθ=2sin(θ+$\frac{π}{6}$)≤2;
∴2λ+$\sqrt{3}$μ的最大值為:2.此時(shí)θ=$\frac{π}{3}$
故答案為:$\frac{π}{3}$.

點(diǎn)評 考查向量數(shù)量積的運(yùn)算及計(jì)算公式,以及配方法的應(yīng)用,三角代換的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.D為△ABC邊BC中點(diǎn),點(diǎn)P滿足$\overrightarrow{BP}$+$\overrightarrow{CP}$+$\overrightarrow{PA}$=$\overrightarrow{0}$,$\overrightarrow{AP}$=λ$\overrightarrow{PD}$,實(shí)數(shù)λ為( 。
A.$\frac{1}{4}$B.2C.-2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E為AB中點(diǎn),沿線段DE將△ADE折起到△A1DE,使得點(diǎn)A1在平面EBCD上的射影H在直線CD上.
(Ⅰ)求證:平面A1EC⊥平面A1DC;
(Ⅱ)求直線A1B與平面EBCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,直線y=1與橢圓C的兩個(gè)交點(diǎn)間的距離為2.點(diǎn)R(m,n)是橢圓C上任意一點(diǎn).從原點(diǎn)O引圓R:(x-m)2+(y-n)2=1(m2≠1)的兩條切線分別交橢圓C于點(diǎn)A,B.
(1)求橢圓C的方程;
(2)求四邊形OARB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某幾何體的三視圖如圖所示(單位:cm),則此幾何體的體積為$\frac{8}{3}$,表面積為$6+2\sqrt{5}+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=lnx+(x-b)2(b∈R)在區(qū)間[$\frac{1}{2}$,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,$\frac{3}{2}$)B.(-∞,$\frac{9}{4}$)C.(-$\frac{3}{2}$,$\frac{9}{4}$)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}中,a1=1,其前n項(xiàng)的和為Sn,且滿足an=$\frac{{2{S_n}^2}}{{2{S_n}-1}}$(n≥2)
(Ⅰ)證明:數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列;
(Ⅱ)證明:$\frac{1}{3}{S_1}+\frac{1}{5}{S_2}+\frac{1}{7}{S_3}+…+\frac{1}{2n+1}{S_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{160}{3}$,表面積為64+32$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,過橢圓C的左焦點(diǎn)且傾角為60°的直線與圓x2+y2=a2相交,所得弦的長度為$\sqrt{7}$,求橢圓C的方程.

查看答案和解析>>

同步練習(xí)冊答案