設(shè)P={x|x=k•360°<x<k•360°+180°,k∈Z},Q={第一象限或第二象限角},R={x|x=k•360°+45°,k∈Z},S={x|k•360°+45°≤x<k•360°+•90°,k∈Z},則(  )
A、R?Q?S?P?
B、P?Q?S?R?
C、R?P?Q?S
D、R?S?Q?P
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:集合
分析:根據(jù)已知中P,Q,R,S所表示的角,結(jié)合集合的包含關(guān)系的定義,可得答案.
解答: 解:∵P={x|x=k•360°<x<k•360°+180°,k∈Z}={第一象限或第二象限角或終邊落在y軸非負(fù)半軸上的角},
Q={第一象限或第二象限角},
R={x|x=k•360°+45°,k∈Z}={與45°終邊重合的角},
S={x|k•360°+45°≤x<k•360°+•90°,k∈Z},
故R?S?Q?P,
故選:D
點(diǎn)評(píng):本題以集合的包含關(guān)系判斷及應(yīng)用為載體考查了象限角和軸線(xiàn)角的表示,其中正確理解各集合包含角是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐的頂點(diǎn)為P,PA,PB,PC為三條棱,且PA,PB,PC兩兩垂直,又PA=2,PB=3,PC=4,則三棱錐P-ABC的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)復(fù)數(shù)z=
1+i
1-i
等于( 。
A、1B、-1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=(m-1)x2+2mx+3為偶函數(shù),則f(x)在(-5,-2)上的單調(diào)性是( 。
A、增函數(shù)B、減函數(shù)
C、先增后減D、先減后增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在[0,2]上任取兩個(gè)數(shù)a,b,則函數(shù)f(x)=x2+
a
x+b無(wú)零點(diǎn)的概率為(  )
A、
1
8
B、
1
4
C、
3
4
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
b
滿(mǎn)足|
a
+
b
|=2
2
,|
a
|=
2
,|
b
|=
3
,則|
a
-
b
|=(  )
A、
2
B、2
C、1
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

與-453°角的終邊相同的最小正角是( 。
A、-93°B、93°
C、267°D、-267°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,CD⊥平面PAD,PA⊥AD,PA=2,E分別PC的中點(diǎn),點(diǎn)P在棱PA上.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求三棱錐E-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=3,求下列各式的值:
(1)
3
cos(-π-α)-sin(π+α)
3
cos(
π
2
+α)+sin(
2
-α)

(2)2sin2α-3sinαcosα-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案