3.已知函數(shù)f(x)=2015x-log2015($\sqrt{{x}^{2}+1}$-x)-2015-x+2,則關(guān)于x的不等式f(3x+1)+f(x)>4的解集為(-$\frac{1}{4}$,+∞).

分析 可先設(shè)g(x)=$201{5}^{x}-lo{g}_{2015}(\sqrt{{x}^{2}+1}-x)-201{5}^{-x}$,根據(jù)要求的不等式,可以想著判斷g(x)的奇偶性及其單調(diào)性:容易求出g(-x)=-g(x),通過求g′(x),并判斷其符號(hào)可判斷其單調(diào)性,從而原不等式可變成,g(3x+1)>g(-x),而根據(jù)g(x)的單調(diào)性即可得到關(guān)于x的一元一次不等式,解該不等式即得原不等式的解.

解答 解:設(shè)g(x)=$201{5}^{x}-lo{g}_{2015}(\sqrt{{x}^{2}+1}-x)-201{5}^{-x}$;
g(-x)=$201{5}^{-x}+lo{g}_{2015}(\sqrt{{x}^{2}+1}-x)-201{5}^{x}$=-g(x);
g′(x)=$201{5}^{x}ln2015+\frac{\sqrt{{x}^{2}+1}-x}{(\sqrt{{x}^{2}+1}-x)•\sqrt{{x}^{2}+1}•ln2015}$+2015-xln2015>0;
∴g(x)在R上單調(diào)遞增;
∴由f(3x+1)+f(x)>4得,g(3x+1)+2+g(x)+2>4;
∴g(3x+1)>g(-x);
∴3x+1>-x;
解得x$>-\frac{1}{4}$;
∴原不等式的解集為$(-\frac{1}{4},+∞)$.
故答案為:($-\frac{1}{4}$,+∞).

點(diǎn)評(píng) 考查對(duì)數(shù)的運(yùn)算,平方差公式,奇函數(shù)的判斷方法,根據(jù)函數(shù)導(dǎo)數(shù)符號(hào)判斷函數(shù)單調(diào)性的方法,函數(shù)單調(diào)性定義的運(yùn)用,并注意正確求導(dǎo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計(jì)算:∫$\frac{1}{(x-1)(x-2)(x-3)}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個(gè)頂點(diǎn)A(0,0)、B(4,0)、C(0,3),點(diǎn)P是它的內(nèi)切圓上一點(diǎn),求以PA、PB、PC為直徑的三個(gè)圓面積之和的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,且tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB.
(1)求∠C;
(2)若c=$\frac{7}{2}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{15}}}{4}$,F(xiàn)1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上任意一點(diǎn),且△PF1F2的周長是8+2$\sqrt{15}$
(1)求橢圓C的方程;
(2)設(shè)圓T:(x-t)2+y2=$\frac{4}{9}$,過橢圓的上頂點(diǎn)作圓T的兩條切線交橢圓于E、F兩點(diǎn),當(dāng)圓心在x軸上移動(dòng)且t∈(1,3)時(shí),求EF的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an},{bn},a1=1,bn=(1-$\frac{{a}_{n}^{2}}{{a}_{n+1}^{2}}$)$•\frac{1}{{a}_{n+1}}$,n∈N+,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn
(1)若an=2n-1,求Sn
(2)是否存在等比數(shù)列{an},使bn+2=Sn對(duì)任意n∈N+恒成立?若存在,求出所有滿足條件的數(shù)列{an}的通項(xiàng)公式;若不存在,說明理由
(3)若a1≤a2≤…≤an≤…,求證:0≤Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平面直角坐標(biāo)系xOy中,A和B分別是橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和
C2:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上的動(dòng)點(diǎn),已知C1的焦距為2,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,又當(dāng)動(dòng)點(diǎn)A在x軸上的射影為C1的焦點(diǎn)時(shí),點(diǎn)A恰在雙曲線2y2-x2=1的漸近線上.
(Ⅰ)求橢圓C1的標(biāo)準(zhǔn)方程;
(Ⅱ)若C1與C2共焦點(diǎn),且C1的長軸與C2的短軸長度相等,求|AB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在數(shù)列{an}中a1=1,n≥2時(shí)Sn2-anSn+2an=0.
(1)求{an}通項(xiàng)公式;
(2)bn=2n-1記{$\frac{1}{{S}_{n}_{n}}$}前n項(xiàng)和為Tn.求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.將函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象向右平移$\frac{7π}{12}$個(gè)單位,再將圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來的2倍,縱坐標(biāo)不變,得到的圖象對(duì)應(yīng)的函數(shù)表達(dá)式是( 。
A.y=sin(x+$\frac{5}{6}$π)B.y=cosxC.y=sin(4x+$\frac{5}{6}$π)D.y=cos4x

查看答案和解析>>

同步練習(xí)冊(cè)答案