分析 利用韋達(dá)定理,結(jié)合同角三角函數(shù)平方關(guān)系,可得:q=$\frac{{p}^{2}-1}{2}$,從而可求q+p=$\frac{1}{2}$(p+1)2-1,即可得出結(jié)論.
解答 解:∵sinα與cosα是關(guān)于x的方程x2+px+q=0的兩根,
∴sinα+cosα=-p,sinαcosα=q,
∴(sinα+cosα)2=(-p)2,
即1+2sinαcosα=p2,可得:q=$\frac{{p}^{2}-1}{2}$,
∴q+p=$\frac{{p}^{2}-1}{2}$+p=$\frac{1}{2}$p2+p-$\frac{1}{2}$=$\frac{1}{2}$(p+1)2-1,
∴當(dāng)p=-1時(shí),p+q的最小值為-1.
故答案為:-1.
點(diǎn)評 本題考查三角函數(shù)的求值,考查韋達(dá)定理的運(yùn)用,二次函數(shù)的圖象和性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | $\frac{4}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com