我們用aij(1≤i≤n,1≤j≤n,i,j,n∈N*)表示矩陣的第i行第j列元素,已知該矩陣的每一行每一列都是等差數(shù)列,并且a11=1,a12=a21=2,a22=4.
(1)求a54
(2)求aij關于i,j的關系式;
(3)設行列式
.
a23a24a25
a33a34a35
a43a44a45
.
=D,求證:對任意1≤i,j≤n-2,i,j,n∈N*時,都有
.
aijai(j+1)ai(j+2)
a(i+1)ja(i+1)(j+1)a(i+1)(j+2)
a(i+2)ja(i+2)(j+1)a(i+2)(j+2)
.
=D.
考點:幾種特殊的矩陣變換
專題:計算題,證明題,等差數(shù)列與等比數(shù)列,矩陣和變換
分析:由題意可得,矩陣中第一行的公差為1,第二行的公差為2,從而第三行的公差為3,即有第i行的公差為i,
則有第一列的公差為1,第二列的公差為2,從而第j列的公差為j,再由等差數(shù)列的通項公式,即可得到
aij=ai1+(j-1)i=a11+(i-1)+(j-1)i=1+i-1+ij-i=ij,即可得到(1)、(2),再由行列式的性質和計算即可得到(3)的證明.
解答: 解:由于該矩陣的每一行每一列都是等差數(shù)列,并且a11=1,a12=a21=2,a22=4,
則矩陣中第一行的公差為1,第二行的公差為2,從而第三行的公差為3,即有第i行的公差為i,
則有第一列的公差為1,第二列的公差為2,從而第j列的公差為j,
則由等差數(shù)列的通項公式,即可得到,aij=ai1+(j-1)i=a11+(i-1)+(j-1)i=1+i-1+ij-i=ij,
則(1)a54=5×4=20,
(2)aij=ij,
(3)證明:由于行列式
.
a23a24a25
a33a34a35
a43a44a45
.
=
.
6810
91215
121620
.
=24
.
345
345
345
.
=0,
即有D=0,
.
aijai(j+1)ai(j+2)
a(i+1)ja(i+1)(j+1)a(i+1)(j+2)
a(i+2)ja(i+2)(j+1)a(i+2)(j+2)
.
=
.
iji(j+1)i(j+2)
(i+1)j(i+1)(j+1)(i+1)(j+2)
(i+2)j(i+2)(j+1)(i+2)(j+2)
.

=
.
iji(j+1)i(j+2)
jj+1j+2
2j2(j+1)2(j+2)
.
=0=D,
故對任意1≤i,j≤n-2,i,j,n∈N*時,都有
.
aijai(j+1)ai(j+2)
a(i+1)ja(i+1)(j+1)a(i+1)(j+2)
a(i+2)ja(i+2)(j+1)a(i+2)(j+2)
.
=D.
點評:本題考查等差數(shù)列的通項公式和運用,考查三階行列式的計算,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

正數(shù)x,y滿足x+y=2,則x•y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設α,β是兩個平面,α∩β=b,且直線a∥α,a∥β,那么請畫圖表示a與b的位置關系.并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,則cos(π+2α)的值為( 。
A、
7
9
B、-
7
9
C、
2
9
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為R,對任意實數(shù)u,v滿足f(u+v)=f(u)+f(v),且f(uv)=uf(v)+vf(u).用含u、v、f(u)、f(v)的表達式來表示f(
u
v
)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡下列各式:
(1)
a
1
2
-b
1
2
a
1
2
+b
1
2
+
a
1
2
+b
1
2
a
1
2
-b
1
2
;
(2)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)對定義域D的每一個x1,都存在唯一的x2∈D,使f(x1)f(x2)=1成立,則稱f(x)為“自倒函數(shù)”,下列命題正確的是
 
.(把你認為正確自倒函數(shù)命題的序號都填上)
(1)f(x)=sinx+
2
(x∈[-
π
2
π
2
])是自倒函數(shù);  
(2)自倒函數(shù)f(x)的值域可以是R;
(3)自倒函數(shù)f(x)的可以是奇函數(shù);
(4)若y=f(x),y=g(x)都是自倒函數(shù),且定義域相同,則y=f(x)•g(x)是自倒函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設非空集合A,若對A中任意兩個元素a,b,通過某個法則“•”,使A中有唯一確定的元素c與之對應,則稱法則“•”為集合A上的一個代數(shù)運算.若A上的代數(shù)運算“•”還滿足:(1)對?a,b,c∈A,都有(a•b)•c=a•(b•c);(2)對?a∈A,?e,b∈A,使得e•a=a•e=a,a•b=b•a=e.稱A關于法則“•”構成一個群.給出下列命題:
①實數(shù)的除法是實數(shù)集上的一個代數(shù)運算;
②自然數(shù)集關于自然數(shù)的加法不能構成一個群;
③非零有理數(shù)集關于有理數(shù)的乘法構成一個群;
④正整數(shù)集關于法則a°b=ab構成一個群.
其中正確命題的序號是
 
.(填上所有正確命題的序號).

查看答案和解析>>

同步練習冊答案