設(shè).
(1)判斷函數(shù)y=f(x)的奇偶性;
(2)求函數(shù)y=f(x)的定義域和值域.
(1)奇函數(shù)(2)定義域,k∈Z},值域為R
解析試題分析:解:(1)∵0⇒﹣<sinx<⇒kπ﹣<x<kπ+,k∈Z,定義域關(guān)于原點(diǎn)對稱.
∴f(﹣x)=log2=log2=﹣log2=﹣f(x).
∴故其為奇函數(shù);
(2)由上得:定義域,k∈Z},
∵==﹣1+.
而﹣<sinx<⇒0<1+2sinx<2⇒>1⇒﹣1+>0⇒y=log3的值域為R. ∴值域為R.
考點(diǎn):三角函數(shù)的圖像與性質(zhì)
點(diǎn)評:解決的關(guān)鍵是對于復(fù)合函數(shù)單調(diào)性,以及三角函數(shù)的性質(zhì)的熟練運(yùn)用,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)、已知函數(shù)若角
(2)函數(shù)的圖象按向量平移后,得到一個函數(shù)g(x)的圖象,求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)市氣象站對春季某一天氣溫變化的數(shù)據(jù)統(tǒng)計顯示,氣溫變化的分布可以用曲線
擬合(,單位為小時,表示氣溫,單位為攝氏度,,),
現(xiàn)已知這天氣溫為4至12攝氏度,并得知在凌晨1時整氣溫最低,下午13時整氣溫最高。
(1)求這條曲線的函數(shù)表達(dá)式;
(2)求這一天19時整的氣溫。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題共9分)
已知函數(shù)f(x)=Asin(x+)(x∈R,>0,0<<)的部分圖象如圖所示。
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)g(x)=f(x-)的單調(diào)遞增區(qū)間。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com