9.某學(xué)家校共有教師300人,其中高級(jí)職稱(chēng)30人,中級(jí)職稱(chēng)180人,初級(jí)職稱(chēng)90人,現(xiàn)用分層抽樣方法抽取一個(gè)容量為60的樣本,則高級(jí)職稱(chēng)中抽取的人數(shù)為(  )
A.10B.6C.8D.4

分析 利用分層抽樣性質(zhì)直接求解.

解答 解:共有教師300人,其中高級(jí)職稱(chēng)30人,中級(jí)職稱(chēng)180人,初級(jí)職稱(chēng)90人,
現(xiàn)用分層抽樣方法抽取一個(gè)容量為60的樣本,
則高級(jí)職稱(chēng)中抽取的人數(shù)為:60×$\frac{30}{30+180+90}$=6.
故選:B.

點(diǎn)評(píng) 本題考查高級(jí)職稱(chēng)中抽取的人數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分層抽樣的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知圓C:x2+y2=1,若直線l:x+y+m=0上存在一點(diǎn)P,在經(jīng)過(guò)點(diǎn)P的所有直線中,至少有一對(duì)相互垂直的直線l1,l2,使這一對(duì)直線l1,l2與圓C均有公共點(diǎn),則實(shí)數(shù)m的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.4sin15°sin165°-2等于(  )
A.1B.-1C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.對(duì)兩個(gè)變量x和y進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…(xn,yn),則下列說(shuō)法中不正確的是( 。
A.由樣本數(shù)據(jù)得到的回歸方程$\frac{∧}{y}$=${\;}_^{∧}$x+${\;}_{a}^{∧}$必過(guò)樣本中心(${\;}_{x}^{-}$,${\;}_{y}^{-}$)
B.殘差平方和越小的模型,擬合的效果越好
C.若變量y和x之間的相關(guān)系數(shù)為r=-0.9362,則變量和之間具有線性相關(guān)關(guān)系
D.用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2越小,說(shuō)明模型的擬合效果越好

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.將函數(shù)f(x)=sin($\frac{1}{5}$x+$\frac{13}{6}$π)的圖象向右平移$\frac{10}{3}$π個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,則下列結(jié)論錯(cuò)誤的是( 。
A.函數(shù)g(x)的最小正周期為10πB.函數(shù)g(x)是偶函數(shù)
C.函數(shù)g(x)的圖象關(guān)于直線x=$\frac{π}{4}$對(duì)稱(chēng)D.函數(shù)g(x)在[π,2π]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,若輸入x=20,則輸出x的值為(  )
A.$\frac{1}{2}$B.$\frac{3}{8}$C.$\frac{3}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且acosB-bcosA=$\frac{3}{5}$c,則tan(A-B)的最大值為( 。
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=lnx+a,g(x)=$\frac{x}$-x(a,b∈R).
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在點(diǎn)(1,f(1))處的切線方程相同,求實(shí)數(shù)a,b的值;
(Ⅱ)若f(x)≥g(x)恒成立,求證:當(dāng)a≤-2時(shí),b≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若不等式ax2-bx+c>0的解集為{x|-2<x<3},求不等式cx2-bx-a<0的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案