1.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊長(zhǎng)分別為a,b,c,且acosB-bcosA=$\frac{3}{5}$c,則tan(A-B)的最大值為( 。
A.$\frac{3}{5}$B.$\frac{1}{3}$C.$\frac{3}{8}$D.$\frac{3}{4}$

分析 利用正弦定理,將已知等式化簡(jiǎn)整理得sinAcosB=4sinBcosA,兩邊同除以cosAcosB,得到tanA=4tanB.利用兩角差的正切公式,得tan(A-B)=$\frac{3}{\frac{1}{tanB}+4tanB}$,最后利用基本不等式求最值,可得當(dāng)且僅當(dāng)tanB=$\frac{1}{2}$時(shí),tan(A-B)的最大值為$\frac{3}{4}$.

解答 解:∵acosB-bcosA=$\frac{3}{5}$c,
∴結(jié)合正弦定理,得sinAcosB-sinBcosA=$\frac{3}{5}$sinC,
∵C=π-(A+B),得sinC=sin(A+B),
∴sinAcosB-sinBcosA=$\frac{3}{5}$(sinAcosB+cosAsinB),
整理,得sinAcosB=4sinBcosA,同除以cosAcosB,得tanA=4tanB,
由此可得tan(A-B)=$\frac{tanA-tanB}{1+tanAtanB}$=$\frac{3tanB}{1+4ta{n}^{2}B}$=$\frac{3}{\frac{1}{tanB}+4tanB}$,
∵A、B是三角形內(nèi)角,且tanA與tanB同號(hào),
∴A、B都是銳角,即tanA>0,tanB>0,
∵$\frac{1}{tanB}$+4tanB≥2 $\sqrt{\frac{1}{tanB}•4tanB}$=4,
∴tan(A-B)=$\frac{3}{\frac{1}{tanB}+4tanB}$≤$\frac{3}{4}$,當(dāng)且僅當(dāng)$\frac{1}{tanB}$=4tanB,即tanB=$\frac{1}{2}$時(shí),tan(A-B)的最大值為$\frac{3}{4}$.
故選:D.

點(diǎn)評(píng) 本題已知三角形邊角的一個(gè)關(guān)系式,求tan(A-B)的最大值,著重考查了正弦定理、兩角差的正切公式和基本不等式求最值等知識(shí),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在△ABC中,已知點(diǎn)D在BC邊上,且$\overrightarrow{AD}$•$\overrightarrow{AC}$=0,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,BD=$\sqrt{3}$,則cosC=( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{2}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{a}$=(cos20°,sin20°),$\overrightarrow$=(sin10°,cos10°).若t為實(shí)數(shù),且$\overrightarrow{u}$=$\overrightarrow{a}$+t$\overrightarrow$,則|$\overrightarrow{u}$|的最小值為( 。
A.$\sqrt{2}$B.1C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某學(xué)家校共有教師300人,其中高級(jí)職稱30人,中級(jí)職稱180人,初級(jí)職稱90人,現(xiàn)用分層抽樣方法抽取一個(gè)容量為60的樣本,則高級(jí)職稱中抽取的人數(shù)為( 。
A.10B.6C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖是“平面向量的數(shù)量積”的知識(shí)結(jié)構(gòu)圖,若要加入“投影”,則應(yīng)該是在幾何意義的下位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,在區(qū)間(0,$\frac{1}{2}$]內(nèi)任取兩個(gè)不相等的實(shí)數(shù)m,n,若不等式mf(m)+nf(n)<nf(m)+mf(n)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,2]B.(-∞,$\frac{5}{2}$]C.[2,$\frac{5}{2}$]D.[$\frac{5}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x),滿足f(x-2)=-f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x2+x+sinx,若方程f(x)=m(m>0)在區(qū)間[-4,4]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4的值為( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某城市有甲、乙、丙三個(gè)旅游景點(diǎn),一位游客游覽這三個(gè)景點(diǎn)的概率分別是0.4、0.5、0.6,且游客是否游覽哪個(gè)景點(diǎn)互不影響,用ξ表示該游客離開該城市時(shí)游覽的景點(diǎn)數(shù)與沒有游覽的景點(diǎn)數(shù)之差的絕對(duì)值.
(1)求ξ的分布列及期望;
(2)記“f(x)=2ξx+4在[-3,-1]上存在x,使f(x)=0”為事件A,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.△ABC的三內(nèi)角A、B、C滿足sin2A+sin2B=2sin2C,那么cosC的最小值是$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案