9.設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知a=x,b=2,B=45°,如果解三角形有且只有一個(gè)解,則x的取值范圍是(0,2]∪{2$\sqrt{2}$}.

分析 由B的度數(shù)求出sinB的值,再由b的值,利用正弦定理得出a與sinA的關(guān)系式,同時(shí)由B的度數(shù)求出A+C的度數(shù),再根據(jù)三角形只有一解,可得A只有一個(gè)值,根據(jù)正弦函數(shù)的圖象與性質(zhì)得到A的范圍,且當(dāng)A為直角時(shí),也滿足題意,進(jìn)而由A的范圍,求出正弦函數(shù)的值域,根據(jù)a與sinA的關(guān)系式,由正弦函數(shù)的值域即可可得出a的范圍.

解答 解:∵B=45°,b=2,
根據(jù)正弦定理得:$\frac{a}{sinA}=\frac{sinB}$=2$\sqrt{2}$,
∴a=2$\sqrt{2}$sinA,
又A+C=180°-45°=135°,且三角形只一解,可得A有一個(gè)值,
∴0<A≤45°,
又A=90°時(shí),三角形也只有一解,
∴0<sinA≤$\frac{\sqrt{2}}{2}$,或sinA=1,
又a=2$\sqrt{2}$sinA,
∴a的取值范圍為(0,2]∪{2$\sqrt{2}$}.
故答案為:(0,2]∪{2$\sqrt{2}$}.

點(diǎn)評(píng) 此題屬于解三角形的題型,涉及的知識(shí)有:正弦定理,正弦函數(shù)的圖象與性質(zhì),正弦函數(shù)的定義域和值域,以及特殊角的三角函數(shù)值,考查了學(xué)生綜合分析問題及基本運(yùn)算的能力,熟練掌握定理及性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)y=sin(x-$\frac{π}{4}$)在[-$\frac{3π}{4}$,$\frac{π}{4}$]上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.有4塊大小不同的試驗(yàn)田,要種不同的3種蔬菜,若每塊最多種一種蔬菜,同一種蔬菜都得種入同一塊田里.則不同的種植方式的種數(shù)是( 。
A.${C}_{4}^{3}$B.A43C.43D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{4}$=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∠F1PF2=90°,|PF1|<|PF2|.求:
(1)|PF1|的值;
(2)△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知a,b∈R,求證:2a2+5b2+1≥4ab+2b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖空間直角坐標(biāo)系中,正方體AC1的棱長(zhǎng)為2,E是BC中點(diǎn),則點(diǎn)E的坐標(biāo)是(1,2,2).
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)y=x+$\frac{a}{x}$有如下性質(zhì):如果a>0,那么該函數(shù)在(0,$\sqrt{a}$]上是減函數(shù),在[$\sqrt{a}$,+∞)上是增函數(shù).
(1)若函數(shù)y=x+$\frac{{3}^{m}}{x}$(x>0)的值域是[6,+∞),求實(shí)數(shù)m的值;
(2)若把函數(shù)f(x)=x2+$\frac{a}{{x}^{2}}$(a>0)在[1,2]上的最小值記為g(a).
(ⅰ)求g(a)的表達(dá)式;
(ⅱ)若g(a)≥t2-mt-1對(duì)所有的a>0,m∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知f(x)=x3-ax在[1,+∞)上是單調(diào)增函數(shù),則a的最大值是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)z=$\frac{2-i}{1+i}$(其中i是虛數(shù)單位),則z的共軛復(fù)數(shù)$\overline{z}$=( 。
A.$\frac{1}{2}$-$\frac{3}{2}$iB.-$\frac{1}{2}$-$\frac{3}{2}$iC.$\frac{1}{2}$+$\frac{3}{2}$iD.-$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

同步練習(xí)冊(cè)答案