【題目】已知.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)任意,都有,求實(shí)數(shù)的取值范圍.
【答案】(1)見(jiàn)解析;(2).
【解析】
(1)求出函數(shù)的定義域和導(dǎo)數(shù),對(duì)分和兩種情況,分析在上的符號(hào),可得出函數(shù)的單調(diào)區(qū)間;
(2)由,轉(zhuǎn)化為,構(gòu)造函數(shù),且有,問(wèn)題轉(zhuǎn)化為,對(duì)函數(shù)求導(dǎo),分析函數(shù)的單調(diào)性,結(jié)合不等式求出實(shí)數(shù)的取值范圍.
(1)函數(shù)的定義域?yàn)?/span>,.
①當(dāng)時(shí),對(duì)任意的,,此時(shí),函數(shù)的單調(diào)遞減區(qū)間為;
②當(dāng)時(shí),令,得;令,得.
此時(shí),函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;
(2),即,得,
又,不等式兩邊同時(shí)除以,得,即.
易知,由題意可知對(duì)任意的恒成立,.
①若,則當(dāng)時(shí),,,此時(shí),
此時(shí),函數(shù)在上單調(diào)遞減,則,不合乎題意;
②若,對(duì)于方程.
(i)當(dāng)時(shí),即,恒成立,
此時(shí),函數(shù)在上單調(diào)遞增,則有,合乎題意;
(ii)當(dāng)時(shí),即時(shí),
設(shè)方程的兩個(gè)不等實(shí)根分別為、,且,
則,,所以,,,.
當(dāng)時(shí),;當(dāng)時(shí),,,不合乎題意.
綜上所述,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì),頻率分布直方圖如圖所示:
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來(lái)自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷(xiāo)商來(lái)收購(gòu)芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有1000個(gè),經(jīng)銷(xiāo)商提出以下兩種收購(gòu)方案:
方案①:所有芒果以9元/千克收購(gòu)
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購(gòu),對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購(gòu).通過(guò)計(jì)算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.
為了解某校高三學(xué)生質(zhì)檢數(shù)學(xué)成績(jī)分布,從該校參加質(zhì)檢的學(xué)生數(shù)學(xué)成績(jī)中抽取一個(gè)樣本,并分成5組,繪成如圖所示的頻率分布直方圖.若第一組至第五組數(shù)據(jù)的頻率之比為,最后一組數(shù)據(jù)的頻數(shù)是6.
(Ⅰ)估計(jì)該校高三學(xué)生質(zhì)檢數(shù)學(xué)成績(jī)?cè)?/span>125~140分之間的概率,并求出樣本容量;
(Ⅱ)從樣本中成績(jī)?cè)?/span>65~95分之間的學(xué)生中任選兩人,求至少有一人成績(jī)?cè)?/span>65~80分之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求在上的解析式;
(2)若,函數(shù),是否存在實(shí)數(shù)使得的最小值為,若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,已知曲線:和曲線:,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸非負(fù)半軸建立平面直角坐標(biāo)系.
(1)求曲線和曲線的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線上一動(dòng)點(diǎn),過(guò)點(diǎn)作線段的垂線交曲線于點(diǎn),求線段長(zhǎng)度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),對(duì)任意實(shí)數(shù),均滿足,且,數(shù)列,滿足,,則下列說(shuō)法正確的有_____
①數(shù)列為等比數(shù)列;
②數(shù)列為等差數(shù)列;
③若為數(shù)列的前n項(xiàng)和,則;
④若為數(shù)列{}的前項(xiàng)和,則;
⑤若為數(shù)列{}的前項(xiàng)和,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖幾何體是圓錐的一部分,它是Rt△ABC(及其內(nèi)部)以一條直角邊AB所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)150°得到的,AB=BC=2,P是弧上一點(diǎn),且EB⊥AP.
(1)求∠CBP的大;
(2)若Q為AE的中點(diǎn),D為弧的中點(diǎn),求二面角Q﹣BD﹣P的余弦值;
(3)直線AC上是否存在一點(diǎn)M,使得B、D、M、Q四點(diǎn)共面?若存在,請(qǐng)說(shuō)明點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點(diǎn)處的切線的斜率為1,問(wèn):在什么范圍取值時(shí),對(duì)于任意的,函數(shù)在區(qū)間上總存在極值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍;
(2)記表示中的最小值,若函數(shù)在內(nèi)恰有一個(gè)零點(diǎn),求實(shí)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com