6.在等比數(shù)列中,a1=$\frac{1}{2}$,q=$\frac{1}{2}$,an=$\frac{1}{64}$,則項(xiàng)數(shù)n為( 。
A.3B.4C.5D.6

分析 由等比數(shù)列通項(xiàng)公式列出方程,能求出項(xiàng)數(shù)n.

解答 解:∵在等比數(shù)列中,a1=$\frac{1}{2}$,q=$\frac{1}{2}$,an=$\frac{1}{64}$,
∴an=$\frac{1}{2}×(\frac{1}{2})^{n-1}$=$\frac{1}{64}$,
解得n=6.
∴項(xiàng)數(shù)n為6.
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的項(xiàng)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(x)=1+x-$\frac{{x}^{2}}{2}$+$\frac{{x}^{3}}{3}$-$\frac{{x}^{4}}{4}$+…+$\frac{{x}^{2017}}{2017}$,B(x)=1-x+$\frac{{x}^{2}}{2}$-$\frac{{x}^{3}}{3}$+$\frac{{x}^{4}}{4}$-…-$\frac{{x}^{2017}}{2017}$,設(shè)函數(shù)F(x)=A(x+5)•B(x-6)且F(x)的零點(diǎn)均在區(qū)間[m,n](m<n,m,n∈Z)內(nèi),則n-m的最小值為( 。
A.11B.12C.13D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知四棱錐P-ABCD的5個(gè)頂點(diǎn)都在球O的球面上,若底面ABCD為距形,AB=4,BC=4$\sqrt{3}$,且四棱錐P-ABCD體積的最大值為64$\sqrt{3}$,則球O的表面積為$\frac{1600π}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知sinθ=2cosθ,則$\frac{{sin(\frac{π}{2}+θ)-cos(π+θ)}}{{sin(\frac{π}{2}-θ)-sin(π-θ)}}$=( 。
A.2B.-2C.0D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.不等式3${\;}^{{x^2}+2x-4}}$≥$\frac{1}{3}$的解集為{x|x≤-3或x≥1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2^x}-1,x≤1\\-{log_2}x+1,x>1\end{array}$,則f[f(2)]=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在60°的二面角α-l-β的棱l上有兩點(diǎn)A,B,直線AC,BD分別在這個(gè)二面角的兩個(gè)半平面內(nèi),AC⊥l.BD⊥l,若AB=4,AC=6,BD=8,則CD的長(zhǎng)為2$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和.若a1=$\frac{1}{4}$,a2a6=4(a4-1),則S5=( 。
A.$\frac{15}{4}$B.15C.$\frac{31}{4}$D.31

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{1}{3-i}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案