分析 先根據(jù)排列和組合數(shù)公式,求出集合A,B,C,得到全集U,先確定個(gè)位數(shù)字,再確定其它數(shù)位的數(shù)字,問(wèn)題得以解決.
解答 解:∵A={x|${C}_{x}^{4}$>${C}_{x}^{6}$},
∴$\frac{x!}{(x-4)!•4!}$>$\frac{x!}{(x-6)!•6!}$,且x≥6
∴A={x|6≤x<10},
∵B={x|${C}_{10}^{x}$=${C}_{10}^{3x-2}$}
∴x+3x-2=10,
即x=3,
∴B={x|x=3},
∵C={x|${A}_{9}^{x}$>${C}_{4}^{2}$${A}_{9}^{x-2}$},
∴$\frac{9!}{(9-x)!}>6\frac{9!}{(9-x+2)!}$,且x≤9且,x-2≥0,
∴C={x|8<x≤9},
∵全集U=A∪B∪C,
∴U={3,6,7,8,9},
(1)從U中每次取出2奇2偶四個(gè)數(shù),有${C}_{3}^{2}{C}_{2}^{2}$=3種,先排個(gè)位數(shù)字,有${A}_{2}^{1}$,其他任意排,故有${C}_{3}^{2}{C}_{2}^{2}$•${A}_{2}^{1}$$•{A}_{3}^{3}$=36種;
(2)被5除余2的個(gè)位數(shù)字為7,其它三位任意排列,故有${A}_{4}^{3}$=24種.
點(diǎn)評(píng) 本題考查了排列數(shù)和組合數(shù)公式,以及分步計(jì)數(shù)原理,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=-|x-1| | B. | y=ex | C. | y=ln(x+1) | D. | y=-x(x+2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | K的最大值為$\frac{1}{e}$ | B. | K的最小值為$\frac{1}{e}$ | C. | K的最大值為2 | D. | K的最小值為2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com