15.已知眨tanα,tanβ是方程x2+3$\sqrt{3}$x+4=0的兩根,且-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$$<β<\frac{π}{2}$,進(jìn)一步準(zhǔn)確判斷α,β所在象限并求角α+β.

分析 由條件利用韋達(dá)定理求得α、β為第四象限角;再結(jié)合tan(α+β)=$\sqrt{3}$,α+β∈(-π,0),可得α+β的值.

解答 解:由題意可得tanα+tanβ=-3$\sqrt{3}$,tanα•tanβ=4,再根據(jù)-$\frac{π}{2}$<α<$\frac{π}{2}$,-$\frac{π}{2}$$<β<\frac{π}{2}$,
可得α、β∈(-$\frac{π}{2}$,0),即α、β均為第四象限角.
再結(jié)合tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=$\sqrt{3}$,α+β∈(-π,0),
可得α+β=-$\frac{2π}{3}$.

點(diǎn)評(píng) 本題主要考查韋達(dá)定理,兩角和差的正切公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.為了解某學(xué)科考試成績(jī)情況,從甲、乙兩個(gè)班級(jí)各隨機(jī)抽取10名同學(xué)的成績(jī)進(jìn)行統(tǒng)計(jì)分析,成績(jī)小于90分為不及格,抽取甲、乙兩個(gè)班的成績(jī)記錄如下:
甲:77 75 72 88 86 83 98 95 108 106
乙:78 79 86 87 88 91 92 93 95 101
(Ⅰ)用莖葉圖表示兩組數(shù)據(jù),并指出甲班10名同學(xué)成績(jī)的方差與乙班10名同學(xué)成績(jī)的方差的大。ú灰笥(jì)算出具體值,給出結(jié)論即可);
(Ⅱ)從甲班10人中取兩人,乙班10人中取一人,三人中不及格人數(shù)記為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{MN}$在正方形網(wǎng)格中的位置如圖所示,若$\overrightarrow{MN}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$(λ,μ∈R),則$\frac{λ}{μ}$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.△ABC中,E,F(xiàn)分別為AB,AC的中點(diǎn),以BC為邊所在直線為軸旋轉(zhuǎn),四邊形BCFE和△AEF旋轉(zhuǎn)所得的幾何體的體積分別為V1,V2,則( 。
A.V1>V2B.V1<V2
C.V1=V2D.V1,V2大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知{an}是等差數(shù)列.
(1)若a1+a3+a7+a9+a20=55,求a3+a13的值.
(2)若a3+a7+a11=18,a3a7a11=120,求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow{a}$=(sin2α-$\frac{2\sqrt{5}}{3}$,2cosα),$\overrightarrow$=(1,1-sinα),α∈(0,π),且$\overrightarrow{a}$$⊥\overrightarrow$,則tan($α-\frac{π}{4}$)=( 。
A.9-4$\sqrt{5}$B.4$\sqrt{5}$-9C.5$\sqrt{2}$-9D.9+4$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.計(jì)算:$\frac{4co{s}^{2}(-\frac{15π}{4})}{tan(-\frac{11π}{3})-\sqrt{2}sin(\frac{21π}{4})}$的值為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知x,y,z都是質(zhì)數(shù),則方程xy+7=z的解(x,y,z)的個(gè)數(shù)是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知$\frac{a-b-c}$=$\frac{sinA+sinC}{sinB-sinA}$.
(I)求角A;
(Ⅱ)若$\overrightarrow{AB}$•$\overrightarrow{CA}$=2,sinB+sinC=1,求邊BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案