【題目】改革開放以來,我國經濟持續(xù)高速增長如圖給出了我國2003年至2012年第二產業(yè)增加值與第一產業(yè)增加值的差值以下簡稱為:產業(yè)差值的折線圖,記產業(yè)差值為單位:萬億元

求出y關于年份代碼t的線性回歸方程;

利用中的回歸方程,分析2003年至2012年我國產業(yè)差值的變化情況,并預測我國產業(yè)差值在哪一年約為34萬億元;

結合折線圖,試求出除去2007年產業(yè)差值后剩余的9年產業(yè)差值的平均值及方差結果精確到

附:回歸直線的斜率和截距的最小二乘法估計公式分別為:,

樣本方差公式:

參考數(shù)據(jù):,

【答案】(1);(2)2022年;(3)平均值為:10.8,方差:

【解析】

求出回歸系數(shù),求出回歸方程即可;

求出的值,代入求值即可;

結合折線圖求出平均值和方差即可.

,

,

,

故回歸方程是:

知,,

2003年至2012年我國產業(yè)差值逐年增加,

平均每年增加萬億元,

,解得:,

故預測在2022年我國產業(yè)差值為34萬億元;

結合折線圖,2007年產業(yè)差值為萬億元,

除去2007產業(yè)差值外的9年的產業(yè)差值平均值為:

,

,

故除去2007產業(yè)差值外的9年的產業(yè)差值的方差為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,在上存在,兩點滿足,且點軸上方,以為切點作的切線與該拋物線的準線相交于,則的坐標為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)將的方程化為普通方程,將的方程化為直角坐標方程;

(Ⅱ)已知直線的參數(shù)方程為,為參數(shù),且,交于點,交于點,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,點Ax1,y1)和點Bx2,y2)是單位圓x2+y2=1上兩點,|AB|=1,則∠AOB=______|y1+2|+|y2+2|的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】四個同樣大小的球,,,兩兩相切,點是球上的動點,則直線與直線所成角的余弦值的取值范圍為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正四棱錐可繞著任意旋轉,平面.,,則正四棱錐在面內的投影面積的取值范圍是_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】沉魚、落雁、閉月、羞花是由精彩故事組成的歷史典故.沉魚,講的是西施浣紗的故事;落雁,指的就是昭君出塞的故事;閉月,是述說貂蟬拜月的故事;羞花,談的是楊貴妃醉酒觀花時的故事.她們分別是中國古代的四大美女.某藝術團要以四大美女為主題排演一部舞蹈劇,已知乙扮演楊貴妃,甲、丙、丁三人抽簽決定扮演的對象,則甲不扮演貂蟬且丙扮演昭君的概率為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,過點,斜率為1的直線與拋物線交于點,,且.

(1)求拋物線的方程;

(2)過點作直線交拋物線于不同于的兩點、,若直線,分別交直線兩點,求取最小值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,點是橢圓上的一個動點,當直線的斜率等于時,軸.

(Ⅰ)求橢圓的方程;

(Ⅱ)過點且斜率為的直線與直線相交于點,試判斷以為直徑的圓是否過軸上的定點?若是,求出定點坐標;若不是,說明理由.

查看答案和解析>>

同步練習冊答案