分析 由題意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$-1,由點(diǎn)C在直線AB上,則當(dāng)C在AB中點(diǎn)時(shí)候,OC⊥AB,OC最小為等邊三角形AOB的高,從而求得$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值.
解答 解:由題意可得$\overrightarrow{CM}$•$\overrightarrow{CN}$=($\overrightarrow{CO}$+$\overrightarrow{OM}$)•($\overrightarrow{CO}$+$\overrightarrow{ON}$)=${\overrightarrow{CO}}^{2}$+$\overrightarrow{CO}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)+$\overrightarrow{OM}•\overrightarrow{ON}$,
∵M(jìn)N是圓O的任意一條直徑,∴$\overrightarrow{OM}$+$\overrightarrow{ON}$=$\overrightarrow{0}$,$\overrightarrow{OM}•\overrightarrow{ON}$=-1,
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=${\overrightarrow{CO}}^{2}$+0-1=${\overrightarrow{CO}}^{2}$-1.
要求$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值問(wèn)題就是求${\overrightarrow{CO}}^{2}$的最小值,
由于$\frac{1}{2}$$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$(λ∈R),故點(diǎn)C在直線AB上,則當(dāng)C在AB中點(diǎn)時(shí)候,
OC⊥AB,OC最小為等邊三角形AOB的高線,為$\frac{\sqrt{3}}{2}$,此時(shí)${\overrightarrow{CO}}^{2}$=$\frac{3}{4}$,
故$\overrightarrow{CM}$•$\overrightarrow{CN}$的最小值為${\overrightarrow{CO}}^{2}$-1=-$\frac{1}{4}$,
故答案為:-$\frac{1}{4}$.
點(diǎn)評(píng) 本題主要考查兩個(gè)向量的加減法的法則,以及其幾何意義,兩個(gè)向量的數(shù)量積的運(yùn)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | c<b<a | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1} | B. | {3} | C. | {1,3,3,4} | D. | {1,3,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com