【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

【答案】B

【解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.

輸入,不成立,是偶數(shù)成立,則,

不成立,是偶數(shù)不成立,則,;

不成立,是偶數(shù)成立,則,;

不成立,是偶數(shù)成立,則,;

不成立,是偶數(shù)成立,則,;

不成立,是偶數(shù)成立,則,;

成立,跳出循環(huán),輸出i的值為.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2014年非洲爆發(fā)了埃博拉病毒疫情,在疫情結(jié)束后,當(dāng)?shù)胤酪卟块T做了一項(xiàng)回訪調(diào)查,得到如下結(jié)果,

患病

不患病

有良好衛(wèi)生習(xí)慣

20

180

無良好衛(wèi)生習(xí)慣

80

220

1)結(jié)合上面列聯(lián)表,是否有的把握認(rèn)為是否患病與衛(wèi)生習(xí)慣有關(guān)?

2)現(xiàn)從有良好衛(wèi)生習(xí)慣且不患病的180人中抽取,,,,5人,再從這5人中選兩人給市民做健康專題報告,求,至少有一人被選中的概率.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)fx)=2sinxsinxcosx)﹣1圖象向右平移個單位得函數(shù)gx)的圖象,則下列命題中正確的是( 。

A.fx)在()上單調(diào)遞增

B.函數(shù)fx)的圖象關(guān)于直線x對稱

C.gx)=2cos2x

D.函數(shù)gx)的圖象關(guān)于點(diǎn)(,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 ,其焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于兩點(diǎn),過分別作拋物線的切線,,交于點(diǎn).

(Ⅰ)求的值;

(Ⅱ)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對于每一個正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,,,點(diǎn),滿足.

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,內(nèi)角A,BC的對邊分別為a,b,c,且.

1)若,,請判斷的形狀;

2)若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列結(jié)論:

①下面程序框圖的算法思路源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的,分別為8,12,則輸出的;

②若用樣本數(shù)據(jù)0,-1,2,3來估計(jì)總體的標(biāo)準(zhǔn)差,則總體的標(biāo)準(zhǔn)差估計(jì)值為;

③命題:,則的否命題是,則;

④已知正數(shù),滿足,則的最大值是;

⑤已知函數(shù)滿足,,且當(dāng)時,.在區(qū)間為增函數(shù).

其中結(jié)論正確的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)求證:存在唯一的實(shí)數(shù),使得直線與曲線相切;

2)若,,求證:.

(注:為自然對數(shù)的底數(shù).

查看答案和解析>>

同步練習(xí)冊答案