定義在R上的函數(shù)f(x)對(duì)任意的實(shí)數(shù)a,b都有f(a+b)=f(a)+f(b)+1,求證:
(1)f(0)=-1;
(2)f(x)+f(-x)=-2.
考點(diǎn):抽象函數(shù)及其應(yīng)用
專題:證明題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令a=b=0,代入條件,即可求得f(0)=-1;
(2)令a=x,b=-x,代入條件,并結(jié)合f(0)=-1.即可得證.
解答: 證明:(1)∵對(duì)任意的實(shí)數(shù)a,b都有f(a+b)=f(a)+f(b)+1,
∴令a=b=0,則f(0)=f(0)+f(0)+1,
∴f(0)=-1;
(2))∵對(duì)任意的實(shí)數(shù)a,b都有f(a+b)=f(a)+f(b)+1,
∴令a=x,b=-x,則f(0)=f(x)+f(-x)+1,
∴f(x)+f(-x)=-2.
點(diǎn)評(píng):本題考查抽象函數(shù)及運(yùn)用,考查解決抽象函數(shù)的常用方法:賦值法,正確賦值是迅速解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3>0},B={x|x2+ax+b≤0},若A∩B={x|3<x≤4},A∪B=R,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C的對(duì)邊分別是a、b、c,已知cos(A-C)+cosB=
6
2
,a=
6
2
c,求C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),若不等式f(ax+6)+f(2-x2)<0對(duì)?x∈[2,4]都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:任何一個(gè)函數(shù)都可以表示為一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x(
1
2x-1
+
1
2
)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知?jiǎng)訄AP與圓F1:x2+(y+2)2=
121
4
內(nèi)切,與圓F2:x2+(y-2)2=
1
4
外切,記動(dòng)圓圓心點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)若直線l過點(diǎn)F2且與軌跡E相交于P、Q兩點(diǎn).
(i)若△F1PQ的內(nèi)切圓半徑r=
10
9
,求△F1PQ的面積;
(ii)設(shè)點(diǎn)M(0,m),問:是否存在實(shí)數(shù)m,使得直線l繞點(diǎn)F2無論怎樣轉(zhuǎn)動(dòng),都有
MP
MQ
=0成立?若存在,求出實(shí)數(shù)m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種集合運(yùn)算A?B={x|x∈(A∪B),且x∉(A∩B)},設(shè)M={x|-2<x<2},N={x|1<x<3},則M?N所表示的集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x
+
4-x
,則函數(shù)f(x)的值域?yàn)?div id="k2yuqqy" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案