6.已知兩定點(diǎn)A(-2,0),B(1,0),若動(dòng)點(diǎn)P滿足|PA|=2|PB|,則P的軌跡為( 。
A.直線B.線段C.D.半圓

分析 設(shè)P點(diǎn)的坐標(biāo)為(x,y),利用兩點(diǎn)間的距離公式表示出|PA|、|PB|,代入等式|PA|=2|PB|,化簡(jiǎn)整理得答案.

解答 解:設(shè)P點(diǎn)的坐標(biāo)為(x,y),
∵A(-2,0)、B(1,0),動(dòng)點(diǎn)P滿足|PA|=2|PB|,
∴$\sqrt{(x+2)^{2}+{y}^{2}}=2\sqrt{(x-1)^{2}+{y}^{2}}$,平方得(x+2)2+y2=4[(x-1)2+y2],
即(x-2)2+y2=4.
∴P的軌跡為圓.
故選:C.

點(diǎn)評(píng) 本題考查動(dòng)點(diǎn)的軌跡的求法,著重考查了兩點(diǎn)間的距離公式、圓的標(biāo)準(zhǔn)方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)a=3${\;}^{\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log2$\frac{1}{3}$,則a,b,c大小關(guān)系是a>b>c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.點(diǎn)A(1,2)到直線3x-4y-5=0的距離是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.當(dāng)m∈[1,5)時(shí),函數(shù)f(x)=(m-1)x2-(m-1)x+1的圖象總在x軸上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.兩圓(x-1)2+(y+2)2=1與(x+3)2+(y-1)2=16的位置關(guān)系是( 。
A.內(nèi)切B.外切C.相離D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,S1,S3,S2成等差數(shù)列,且a1-a3=3,
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求Sn,并求滿足Sn≤2的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓C1:(x+1)2+y2=1,C2:(x-1)2+y2=25,動(dòng)圓C與圓C1外切,與圓C2內(nèi)切,則圓C的圓心的軌跡方程為(  )
A.$\frac{x^2}{3}+\frac{y^2}{2}=1$B.$\frac{x^2}{9}+\frac{y^2}{4}=1$C.$\frac{x^2}{9}+\frac{y^2}{5}=1$D.$\frac{x^2}{9}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=kx2+x+k有兩個(gè)不同的零點(diǎn),且一個(gè)零點(diǎn)在區(qū)間(0,1)內(nèi),另一個(gè)在區(qū)間(1,3),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=2x2ex與g(x)=3xex+a的圖象有且只有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是a=$\frac{9\sqrt{e}}{{e}^{2}}$或-e<a≤0.

查看答案和解析>>

同步練習(xí)冊(cè)答案