11.已知等比數(shù)列{an}的前n項和為Sn,S1,S3,S2成等差數(shù)列,且a1-a3=3,
(Ⅰ)求{an}的通項公式;
(Ⅱ)求Sn,并求滿足Sn≤2的n的值.

分析 (I)設(shè)等比數(shù)列{an}的公比為q,由S1,S3,S2成等差數(shù)列,且a1-a3=3,可得2S3=S1+S2即$2{a}_{1}(1+q+{q}^{2})$=a1(2+q),${a}_{1}(1-{q}^{2})$=3,解出即可得出.
(II)利用等比數(shù)列的前n項和公式,并對n分類討論即可得出.

解答 解:(I)設(shè)等比數(shù)列{an}的公比為q,∵S1,S3,S2成等差數(shù)列,且a1-a3=3,
∴2S3=S1+S2即$2{a}_{1}(1+q+{q}^{2})$=a1(2+q),${a}_{1}(1-{q}^{2})$=3,
解得a1=4,q=-$\frac{1}{2}$.
∴${a}_{n}=4×(-\frac{1}{2})^{n-1}$.
(II)Sn=$\frac{4[1-(-\frac{1}{2})^{n}]}{1-(-\frac{1}{2})}$=$\frac{8}{3}[1-(-\frac{1}{2})^{n}]$.,
當n為奇數(shù)時不滿足,
當n為偶數(shù)時,Sn=$\frac{8}{3}[1-(-\frac{1}{2})^{n}]$=$\frac{8}{3}$$(1-\frac{1}{{2}^{n}})$≤2,
解得n=2.

點評 本題考查了等比數(shù)列與等差數(shù)列的通項公式及其的前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.若關(guān)于x的方程2x2+(2-t)x+2=0的兩個實根α,β滿足0<α<1<β<2,則實數(shù)t的取值范圍是6<t<7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如果橢圓的對稱軸為坐標軸,短軸的一個端點與兩焦點組成一正三角形,焦點在x軸上,且a-c=$\sqrt{3}$,那么橢圓的方程是$\frac{x^2}{12}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)f(x)=($\frac{1}{3}$)${\;}^{{x}^{2}-ax}$在(-∞,1]是增函數(shù),則a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知兩定點A(-2,0),B(1,0),若動點P滿足|PA|=2|PB|,則P的軌跡為( 。
A.直線B.線段C.D.半圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知α∈(π,$\frac{3π}{2}$),其cosα=-$\frac{\sqrt{5}}{5}$,則tanα=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.平面內(nèi)到兩定點F1(-3,0)、F2(3,0)的距離之差的絕對值等于4的點M的軌跡( 。
A.橢圓B.線段C.兩條射線D.雙曲線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.圖中.AE=$\frac{1}{4}$AC,且三角形CDE的面積是三角形ABC的一半,那么BD的長度是DC的幾分之幾?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知n∈N*時點An(n,an)都在直線l上,點Bn(n,bn)都在函數(shù)y=2x上,a1=1,a2=3.
(1)求直線l的方程;
(2)若數(shù)列{Cn}滿足Cn=$\left\{\begin{array}{l}{{a}_{n}\\;1≤n≤4}\\{_{n}\\;n≥5}\end{array}\right.$,求數(shù)列{Cn}的前n項和Tn;
(3)若點P1與A1重合,且$\overrightarrow{{P}_{n}{P}_{n+1}}$=(an,bn)(n∈N*),求點Pn的坐標.

查看答案和解析>>

同步練習冊答案