16.設(shè)a=3${\;}^{\frac{1}{2}}$,b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$,c=log2$\frac{1}{3}$,則a,b,c大小關(guān)系是a>b>c.

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=3${\;}^{\frac{1}{2}}$>1,0<b=log${\;}_{\frac{1}{3}}$$\frac{1}{2}$=log32<1,c=log2$\frac{1}{3}$<0,
∴a>b>c.
故答案為:a>b>c.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知tanx=2,則$\frac{sin2x+2cos2x}{{2{{cos}^2}x-3sin2x-1}}$的值為$\frac{2}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)=lg$\frac{1+{2}^{x}+{3}^{x}+…+9{9}^{x}+a•10{0}^{x}}{100}$,其中a是實數(shù),如果f(x)當x∈(-∞,1]時有意義,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知橢圓上一點與兩個焦點的距離之和為10,焦距是函數(shù):f(x)=x2-6x-16的零點.則橢圓的標準方程為$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$或$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)復(fù)數(shù)z=1+i(i是虛數(shù)單位),則復(fù)數(shù)z+$\frac{1}{z}$的虛部是( 。
A.$\frac{1}{2}$B.$\frac{1}{2}$iC.$\frac{3}{2}$D.$\frac{3}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若關(guān)于x的方程2x2+(2-t)x+2=0的兩個實根α,β滿足0<α<1<β<2,則實數(shù)t的取值范圍是6<t<7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等比數(shù)列{an}中,a1=8,a4=1,則a7=(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.平面向量$\overrightarrow a,\overrightarrow b$滿足$(\overrightarrow a+\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=-12$,且$|\overrightarrow a|=2$,$|\overrightarrow b|=4$,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.$\sqrt{3}$B.2C.-2D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知兩定點A(-2,0),B(1,0),若動點P滿足|PA|=2|PB|,則P的軌跡為( 。
A.直線B.線段C.D.半圓

查看答案和解析>>

同步練習(xí)冊答案