【題目】已知橢圓C: 的右焦點為F,右頂點為A,設(shè)離心率為e,且滿足,其中O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線l與橢圓交于M,N兩點,求△OMN面積的最大值.
【答案】(Ⅰ);(Ⅱ) .
【解析】試題分析:(1)根據(jù),解得c值,即可得橢圓的方程;
(Ⅱ)聯(lián)立l與橢圓C的方程,得,
得, .所以,又O到l的距離.所以△OMN的面積求最值即可.
試題解析:(Ⅰ)設(shè)橢圓的焦半距為c,則|OF| = c,|OA| = a,|AF| = .
所以,其中,又,聯(lián)立解得, .
所以橢圓C的方程是.
(Ⅱ)由題意直線不能與x軸垂直,否則將無法構(gòu)成三角形.
當直線l與x軸不垂直時,設(shè)其斜率為k,那么l的方程為.
聯(lián)立l與橢圓C的方程,消去y,得.
于是直線與橢圓有兩個交點的充要條件是Δ=,這顯然大于0.
設(shè)點, .
由根與系數(shù)的關(guān)系得, .所以,又O到l的距離.
所以△OMN的面積. ,那么,當且僅當t = 3時取等.
所以△OMN面積的最大值是.
點睛:本題主要考查直線與圓錐曲線位置關(guān)系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉(zhuǎn)化為方程組關(guān)系問題,最終轉(zhuǎn)化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應(yīng)注意不要忽視判別式的作用.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若,討論函數(shù)的單調(diào)性;
(2)是否存在實數(shù),對任意, , 有恒成立,若存在,求出的范圍,若不存在,請說明理由;
(3)記,如果是函數(shù)的兩個零點,且, 是的導(dǎo)函數(shù),證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=2x+1的定義域為[1,5],則函數(shù)f(2x﹣3)的定義域為( )
A.[1,5]
B.[3,11]
C.[3,7]
D.[2,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣ +3(﹣1≤x≤2).
(1)若λ= 時,求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值是1,求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)在平面直角坐標系中,曲線的參數(shù)方程是 (為參數(shù), ),以原點為極點, 軸的正半軸為極軸,建立極坐標系.
(1)寫出的極坐標方程;
(2)若為曲線上的兩點,且,求的范圍.
(Ⅱ)已知函數(shù), .
(1) 時,解不等式;
(2)若對任意,存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(Ⅰ)平面直角坐標系中,傾斜角為的直線過點,以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出直線的參數(shù)方程(為常數(shù))和曲線的直角坐標方程;
(2)若直線與交于、兩點,且,求傾斜角的值.
(Ⅱ)已知函數(shù).
(1)若函數(shù)的最小值為5,求實數(shù)的值;
(2)求使得不等式成立的實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1,C2的極坐標方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點O)三點A,B,C.
(Ⅰ)求證: ;
(Ⅱ)當時,求點B到曲線C2上的點的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,底面是邊長為2的菱形, ,四邊形是矩形,平面平面.
(1)在圖中畫出過點的平面,使得平面(必須說明畫法,不需證明);
(2)若二面角是,求與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com