【題目】已知函數(shù)f(x)= ﹣ +3(﹣1≤x≤2).
(1)若λ= 時(shí),求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最小值是1,求實(shí)數(shù)λ的值.
【答案】
(1)解: (﹣1≤x≤2)
設(shè) ,得g(t)=t2﹣2λt+3( ).
當(dāng) 時(shí), ( ).
所以 , .
所以 , ,
故函數(shù)f(x)的值域?yàn)閇 , ]
(2)解:由(1)g(t)=t2﹣2λt+3=(t﹣λ)2+3﹣λ2( )
①當(dāng) 時(shí), ,
令 ,得 ,不符合舍去;
②當(dāng) 時(shí), ,
令﹣λ2+3=1,得 ,或 ,不符合舍去;
③當(dāng)λ>2時(shí),g(t)min=g(2)=﹣4λ+7,
令﹣4λ+7=1,得 ,不符合舍去.
綜上所述,實(shí)數(shù)λ的值為
【解析】(1)化簡(jiǎn) (﹣1≤x≤2),再利用換元法得g(t)=t2﹣2λt+3( );從而代入λ= 求函數(shù)的值域;(2)g(t)=t2﹣2λt+3=(t﹣λ)2+3﹣λ2( ),討論λ以確定函數(shù)的最小值及最小值點(diǎn),從而求λ.
【考點(diǎn)精析】本題主要考查了函數(shù)的值域和函數(shù)的最值及其幾何意義的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的;利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲挡拍苷_解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從本班24名女同學(xué),18名男同學(xué)中隨機(jī)抽取一個(gè)容量為7的樣本進(jìn)行分析.
(1)如果按照性別比例分層抽樣,可得到多少個(gè)不同的樣本?(寫(xiě)出算式即可,不必計(jì)算出結(jié)果)
(2)如果隨機(jī)抽取的7名同學(xué)的數(shù)學(xué),物理成績(jī)(單位:分)對(duì)應(yīng)如下表:
若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學(xué)中抽取3名同學(xué),記3名同學(xué)中數(shù)學(xué)和物理成績(jī)均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)以“綠色出行”為宗旨開(kāi)展“共享單車(chē)”業(yè)務(wù).該地有, 兩種“共享單車(chē)”(以下簡(jiǎn)稱(chēng)型車(chē), 型車(chē)).某學(xué)習(xí)小組7名同學(xué)調(diào)查了該地區(qū)共享單車(chē)的使用情況.
(Ⅰ)某日該學(xué)習(xí)小組進(jìn)行一次市場(chǎng)體驗(yàn),其中4人租到型車(chē),3人租到型車(chē).如果從組內(nèi)隨機(jī)抽取2人,求抽取的2人中至少有一人在市場(chǎng)體驗(yàn)過(guò)程中租到型車(chē)的概率;
(Ⅱ)根據(jù)已公布的2016年該地區(qū)全年市場(chǎng)調(diào)查報(bào)告,小組同學(xué)發(fā)現(xiàn)3月,4月的用戶(hù)租車(chē)情況城現(xiàn)如表使用規(guī)律.例如,第3個(gè)月租型車(chē)的用戶(hù)中,在第4個(gè)月有的用戶(hù)仍租型車(chē).
第3個(gè)月 第4個(gè)月 | 租用型車(chē) | 租用型車(chē) |
租用型車(chē) | ||
租用型車(chē) |
若認(rèn)為2017年該地區(qū)租用單車(chē)情況與2016年大致相同.已知2017年3月該地區(qū)租用,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列幾種說(shuō)法: ①若logablog3a=1,則b=3;
②若a+a﹣1=3,則a﹣a﹣1= ;
③f(x)=log(x+ 為奇函數(shù);
④f(x)= 為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log x,其中說(shuō)法正確的序號(hào)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系,將曲線上的每一個(gè)點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來(lái)的,得到曲線,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系, 的極坐標(biāo)方程為.
(Ⅰ)求曲線的參數(shù)方程;
(Ⅱ)過(guò)原點(diǎn)且關(guān)于軸對(duì)稱(chēng)的兩條直線與分別交曲線于、和、,且點(diǎn)在第一象限,當(dāng)四邊形的周長(zhǎng)最大時(shí),求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)的圖象是由y=sin2x向右平移 得到,則下列結(jié)論正確的是( )
A.f(0)<f(2)<f(4)
B.f(2)<f(0)<f(4)
C.f(0)<f(4)<f(2)
D.f(4)<f(2)<f(0)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: 的右焦點(diǎn)為F,右頂點(diǎn)為A,設(shè)離心率為e,且滿(mǎn)足,其中O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)的直線l與橢圓交于M,N兩點(diǎn),求△OMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分)
微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷(xiāo)售商品的人(被稱(chēng)為微商).為了調(diào)查每天微信用戶(hù)使用微信的時(shí)間,某經(jīng)銷(xiāo)化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶(hù)各50名,其中每天玩微信超過(guò)6小時(shí)的用戶(hù)列為“微信控”,否則稱(chēng)其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有﹪的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶(hù)中按分層抽樣的方法選出5人贈(zèng)送營(yíng)養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為,試求的分布列與數(shù)學(xué)期望.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=f(x)最大值為3,且f(﹣4)=f(0)=﹣1
(1)求f(x)的解析式;
(2)求f(x)在[﹣3,3]上的最值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com