【題目】【2016高考浙江理數(shù)】如圖,設(shè)橢圓a1.

I)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a、k表示);

II)若任意以點(diǎn)A0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值

范圍.

【答案】(I);(II)

【解析】

試題分析:(I)先聯(lián)立,可得,再利用弦長(zhǎng)公式可得直線被橢圓截得的線段長(zhǎng);(II)先假設(shè)圓與橢圓的公共點(diǎn)有個(gè),再利用對(duì)稱性及已知條件可得任意以點(diǎn)為圓心的圓與橢圓至多有個(gè)公共點(diǎn)時(shí),的取值范圍,進(jìn)而可得橢圓離心率的取值范圍.

試題解析:(I)設(shè)直線被橢圓截得的線段為,由

,故,

因此

(II)假設(shè)圓與橢圓的公共點(diǎn)有個(gè),由對(duì)稱性可設(shè)軸左側(cè)的橢圓上有兩個(gè)不同的點(diǎn),,滿足

記直線,的斜率分別為,,且,,

由(I)知,

,,

,

所以

由于,,

,

因此

因?yàn)?/span>式關(guān)于,的方程有解的充要條件是,所以

因此,任意以點(diǎn)為圓心的圓與橢圓至多有個(gè)公共點(diǎn)的充要條件為,

得,所求離心率的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l過(guò)點(diǎn)M(﹣1,2)且與以P(﹣2,﹣3),Q(4,0)為端點(diǎn)的線段PQ相交,則l的斜率的取值范圍是(
A.[﹣ ,5]
B.[﹣ ,0)∪(0,5]
C.[﹣ , )∪( ,5]
D.(﹣∞,﹣ ]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A,B分別是直線y=x和y=﹣x上的兩個(gè)動(dòng)點(diǎn),線段AB的長(zhǎng)為2 ,D是AB的中點(diǎn).
(1)求動(dòng)點(diǎn)D的軌跡C的方程;
(2)若過(guò)點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)P、Q,
①當(dāng)|PQ|=3時(shí),求直線l的方程;
②試問(wèn)在x軸上是否存在點(diǎn)E(m,0),使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)及定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)貨卡車以每小時(shí)x千米的速度勻速行駛130千米(50≤x≤100)(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升2元,而汽車每小時(shí)耗油(2+ )升,司機(jī)的工資是每小時(shí)14元.
(1)求這次行車總費(fèi)用y關(guān)于x的表達(dá)式;
(2)當(dāng)x為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中, , , , 分別在上, ,現(xiàn)將四邊形沿折起,使.

(1)若,在折疊后的線段上是否存在一點(diǎn),使得平面?若存在,求出的值;若不存在,說(shuō)明理由;

(2)求三棱錐的體積的最大值,并求出此時(shí)點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【廣西名校2017屆高三上學(xué)期第一次摸底】如圖,過(guò)拋物線一點(diǎn),作兩條直線分別交拋物線于,,

當(dāng)斜率存在且傾斜角互補(bǔ)時(shí)

值;

直線上的截距時(shí),面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x、y)滿足
(1)若x∈{0,1,2,3,4,5},y∈{0,1,2,3,4},則求y≥x的概率.
(2)若x∈[0,5],y∈[0,4],則求x>y的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是圓外一點(diǎn),過(guò)點(diǎn)作圓的切線,切點(diǎn)為,記四邊形的面積為,當(dāng)在圓上運(yùn)動(dòng)時(shí), 的取值范圍為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n項(xiàng)和,則使得Sn達(dá)到最大值的n是(
A.21
B.20
C.19
D.18

查看答案和解析>>

同步練習(xí)冊(cè)答案