下列說法正確的是( 。
A、三點確定一個平面
B、四邊形一定是平面圖形
C、梯形一定是平面圖形
D、平面和平面可能有不同在一條直線上的三個交點
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:根據(jù)平面的基本性質(zhì)即可得到結(jié)論.
解答: 解:A.若三點共線,則A不成立.
B.空間四邊形不一定是平面圖形.
C.梯形的一組對邊是平行的,∴梯形一定是平面圖形.
D.若兩個平面存在在一條直線上的三個交點,則兩個平面重合,故D不成立.
故選:C
點評:本題主要考查平面的基本性質(zhì)的應(yīng)用,要求熟練掌握相應(yīng)的性質(zhì)和公理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,G是重心,PQ過G點,
AP
=m
AB
AQ
=n
AC
,若
AG
=
1
2
AQ
+
AP
),則
1
m
+
1
n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1的長軸長為6,右焦點F是拋物線y2=8x的焦點,則該橢圓的離心率等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是( 。
A、a=(-2,5)與b=(4,-10)方向相同
B、a=(4,10)與b=(-2,-5)方向相反
C、a=(-3,1)與b=(-2,-5)方向相反
D、a=(2,4)與b=(-3,1)的夾角為銳角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=m(x+m)(2x-m-6),g(x)=(
1
2
x-2,命題p:?x∈R,f(x)<0或g(x)<0.命題q:若方程f(x)=0的兩根為α,β,則α<1且β>1.如果命題p∧q為真命題,則實數(shù)m的取值范圍是( 。
A、(-8,-2)∪(-1,0)
B、(-8,-2)∪(-1,1)
C、(-8,-4)∪(-2,0)
D、(-8,-4)∪(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)滿足:①y=f(x+1)是偶函數(shù);②在區(qū)間[1,+∞)上是增函數(shù).若x1<x2<0且x1+x2<-2,則f(-x1)與f(-x2)的大小關(guān)系是( 。
A、f(-x1)>f(-x2
B、f(-x1)<f(-x2
C、f(-x1)=f(-x2
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把函數(shù)y=sin(2x+
π
4
)的圖象向右平移
π
8
個單位,再把所得圖象上各點的橫坐標(biāo)縮短到原來的
1
2
,則所得圖象的函數(shù)解析式是( 。
A、y=sin(4x+
3
8
π)
B、y=sin(4x+
π
8
C、y=sin4x
D、y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的可導(dǎo)函數(shù),且f(x)的圖象是連續(xù)不斷的,當(dāng)x≠0時,有f′(x)=
f(x)
x
>0,則函數(shù)F(x)=xf(x)+
1
x
的零點個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個平面封閉區(qū)域內(nèi)任意兩點距離的最大值稱為該區(qū)域的“直徑”,封閉區(qū)域邊界曲線的長度與區(qū)域直徑之比稱為區(qū)域的“周率”,下面四個平面區(qū)域(陰影部分)的周率從左到右依次記為τ1,τ2,τ3,τ4,則下列關(guān)系中正確的為( 。
A、τ1>τ4>τ3
B、τ3>τ1>τ2
C、τ4>τ2>τ3
D、τ3>τ4>τ1

查看答案和解析>>

同步練習(xí)冊答案