20.不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面區(qū)域的面積為S,則$\frac{{k}^{2}+1}{S}$的最小值等于( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

分析 先畫出不等式組所表示的平面區(qū)域,然后用k表示出圖形的面積,進而表示出$\frac{{k}^{2}+1}{S}$,最后利用基本不等式求出它的最值即可

解答 解:不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面區(qū)域如圖,
A(4,0),B(0,4k),
根據(jù)題意可知三角形OAB為直角三角形,其面積等于
$\frac{1}{2}$×|OA|×|OB|=8k,
∴$\frac{{k}^{2}+1}{S}$=$\frac{{k}^{2}+1}{8k}=\frac{1}{8}(k+\frac{1}{k})≥\frac{1}{8}×2\sqrt{k•\frac{1}{k}}=\frac{1}{4}$,(k>0)
當且僅當k=1時等號,
∴$\frac{{k}^{2}+1}{S}$的最小值為$\frac{1}{4}$,
故選C.

點評 本題考查簡單的線性規(guī)劃,以及利用基本不等式等知識求最值問題,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$,函數(shù)g(x)=f2(x)+f(x)+t(t∈R).關(guān)于函數(shù)g(x)的零點,下列判斷不正確的是( 。
A.若t<-2,g(x)有四個零點B.若t=-2,g(x)有三個零點
C.若-2<t<$\frac{1}{4}$,g(x)有兩個零點D.若t=$\frac{1}{4}$,g(x)有一個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)f(x)=2x在點A(1,2)處切線的斜率為2ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知等比數(shù)列{an}的前n項和為Sn,且4a1,2a2,a3依次等差數(shù)列,若a1=1,則S5=( 。
A.16B.31C.32D.63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在等比數(shù)列{an}中,${a}_{2}{a}_{3}{a}_{4}=\frac{27}{64}$,公比q=2,數(shù)列{bn}是等差數(shù)列,且b7=a5,則b3+b11=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知P為雙曲線$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的動點,點M是圓(x+5)2+y2=4上的動點,點N是圓(x-5)2+y2=1上的動點,則|PM|-|PN|的最大值是9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若某圓柱體的上部挖掉一個半球,下部挖掉一個圓錐后所得的幾何體的三視圖中的正(主)視圖和側(cè)(左)視圖如圖所示,則此幾何體的表面積是(  )
A.(4+$\sqrt{2}$)πB.6$π+2\sqrt{2}π$C.6$π+\sqrt{2}π$D.(8+$\sqrt{2}$)π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知a∈R,函f(x)=x3-ax2+ax+a,g(x)=f(x)+(a-3)x.
(1)求證:曲線y=f(x)在點(1,f(1))處的切線過定點;
(2)若g(1)是g(x)在區(qū)間(0,3]上的極大值,但不是最大值,求實數(shù)a的取值范圍;
(3)求證:對任意給定的正數(shù)b,總存在a∈(3,+∞),使得g(x)在$(\frac{a}{3},\frac{a+b}{3})$上為單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.有 4名男生和2名女生排成一排,下列各種情況分別有多少種排法?
(Ⅰ) 男生甲不站排頭和排尾.
(Ⅱ) 兩名女生必須相鄰.
(Ⅲ) 甲、乙、丙三名同學兩兩不相鄰.
(Ⅳ) 甲不站排頭,乙不站排尾.

查看答案和解析>>

同步練習冊答案