精英家教網 > 高中數學 > 題目詳情
10.已知函數f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$,函數g(x)=f2(x)+f(x)+t(t∈R).關于函數g(x)的零點,下列判斷不正確的是( 。
A.若t<-2,g(x)有四個零點B.若t=-2,g(x)有三個零點
C.若-2<t<$\frac{1}{4}$,g(x)有兩個零點D.若t=$\frac{1}{4}$,g(x)有一個零點

分析 由已知中函數f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$的解析式,畫出函數f(x)的圖象,令m=f(x),可得m≥1時,m=f(x)有兩根,m<1時,m=f(x)有一根,根據二次函數的圖象和性質分析t取不同值時,g(x)=m2+m+t根的個數及分面情況,綜合討論結果,可得答案.

解答 解:函數f(x)=$\left\{\begin{array}{l}{{3}^{x},x≥0}\\{lo{g}_{3}(-x),x<0}\end{array}\right.$的圖象如下圖所示:

令m=f(x),m≥1時,m=f(x)有兩根,m<1時,m=f(x)有一根,
若t<-2,則m2+m+t=0有兩個根,一個大于1,一個小于1
此時,g(x)=0有三個根,故A錯誤;
若t=-2,則由m2+m+t=0得m=-2,m=1,
此時g(x)=0有三個根,
即g(x)有三個零點,故B正確;
若-2<t<$\frac{1}{4}$,則m2+m+t=0有兩個根,但均小于1
此時,g(x)=0有兩個根,故C正確;
若t=$\frac{1}{4}$,則g(x)=f2(x)+f(x)+$\frac{1}{4}$=(m+$\frac{1}{2}$)2=0,
此時m=-$\frac{1}{2}$,由上圖可得,此時函數m=0有一個根,
即g(x)有一個零點,故D正確.
故選A.

點評 本題考查的知識點是根的存在性及根的個數判斷,函數解析式的求解及常用方法,其中畫出函數f(x)的圖象,熟練掌握二次函數的圖象和性質是解答的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

18.函數  y=sin$\frac{x}{2}$,x∈R的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知函數g(x)=a-x2($\frac{1}{e}$≤x≤e,e為自然對數的底數)與h(x)=2lnx的圖象上存在關于x軸對稱的點,則實數a的取值范圍是[1,e2-2].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.設集合A={x|x2<4},B={1,2,3},則A∩B=( 。
A.{1,2,3}B.{1,2}C.{1}D.{2}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知橢圓E的中心為坐標原點,離心率為$\frac{1}{2}$,E的右焦點與拋物線C:y2=8x的焦點重合,A,B是C的準線與E的兩個交點,則|AB|=( 。
A.3B.6C.9D.12

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.國慶節(jié)前夕,甲、乙兩同學相約10月1日上午8:00到8:30之間在7路公交赤峰二中站點乘車去紅山公園游玩,先到者若等了10分鐘還沒有等到后到者,則需發(fā)短信聯系.假設兩人的出發(fā)時間是獨立的,在8:00到8:30之間到達7路公交赤峰二中站點是等可能的,則兩人不需要發(fā)短信聯系就能見面的概率是$\frac{5}{9}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知P:x∈R且x2+2x-3<0,已知Q:x∈R且$\frac{x+2}{x-3}$<0.
(Ⅰ)在區(qū)間(-4,4)上任取一個實數x,求命題“P且Q”為真的概率;
(Ⅱ)設在數對(a,b)中,a∈{x∈Z|P真},b∈{x∈Z|Q真},求“事件b-a∈{x|P或Q真}”發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知全集U={x∈N|y=lg(5-x)},M={x∈Z|1≤2x≤4),N={2,3},則(∁UM)∩N=( 。
A.{2}B.{3}C.{2,3,4}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.不等式組$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{y≤-kx+4k}\end{array}\right.$(k>0)所表示平面區(qū)域的面積為S,則$\frac{{k}^{2}+1}{S}$的最小值等于( 。
A.$\frac{3}{4}$B.$\frac{3}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習冊答案