分析 由已知條件知道雙曲線(xiàn)的兩個(gè)焦點(diǎn)為兩個(gè)圓的圓心和半徑,再利用平面幾何知識(shí)把|PM|-|PN|轉(zhuǎn)化為雙曲線(xiàn)上的點(diǎn)到兩焦點(diǎn)之間的距離即可求|PM|-|PN|的最最大值.
解答 9解:雙曲線(xiàn)雙曲線(xiàn)$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$上的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),
則這兩點(diǎn)正好是兩圓(x+5)2+y2=4和(x-5)2+y2=1的圓心,半徑分別是r1=2,r2=1,
∵|PF1|-|PF2|=2a=6,
∴|PM|max=|PF1|+2,|PN|min=|PF2|-1,
∴|PM|-|PN|的最大值=(|PF1|+2)-(|PF2|-1)=6+3=9,
|PM|-|PN|的最大值為9,
故答案為:9
點(diǎn)評(píng) 本題主要考查了雙曲線(xiàn)的簡(jiǎn)單性質(zhì)和雙曲線(xiàn)與圓的關(guān)系,著重考查了學(xué)生對(duì)雙曲線(xiàn)定義的理解和應(yīng)用,以及對(duì)幾何圖形的認(rèn)識(shí)能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | $\frac{7}{2}$ | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{3}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com