已知
(1)曲線y=f(x)在x=0處的切線恰與直線垂直,求的值;
(2)若x∈[a,2a]求f(x)的最大值;
(3)若f(x1)=f(x2)=0(x1<x2),求證:

(1);(2)當(dāng),即時,,當(dāng),即時,,當(dāng),即時,;(3)證明過程詳見解析.

解析試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值、切線方程以及不等式的證明等基礎(chǔ)知識,考查分類討論思想,綜合分析和解決問題的能力.第一問,對求導(dǎo),將代入得到切線的斜率,由已知切線與直線垂直得出方程,解出的值;第二問,先對求導(dǎo),利用導(dǎo)數(shù)的正負(fù)判斷出函數(shù)的單調(diào)區(qū)間,再討論已知和單調(diào)區(qū)間的關(guān)系來決定最值的位置;第三問,利用第二問的結(jié)論,得出,因為,所以數(shù)形結(jié)合,得,解得,數(shù)形結(jié)合得出兩組點的橫坐標(biāo)的關(guān)系,又利用,得出,進(jìn)行轉(zhuǎn)換得到所求證的不等式.
試題解析:(1)由
得:,則,
所以,得.
(2)令,得,即.
,得,由,得,
上為增函數(shù),在為減函數(shù).
∴當(dāng),即時,.
當(dāng),即時,.
當(dāng),即時,.
(3)由(2)知,,
,∴,
,得,∴,且.
,又,
.
考點:1.利用導(dǎo)數(shù)求切線的斜率;2.兩條直線垂直的充要條件;3.利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;4.利用導(dǎo)數(shù)求函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)證明:;
(2)當(dāng)時,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知
(1)當(dāng)時,求上的值域;
(2)求函數(shù)上的最小值;
(3)證明: 對一切,都有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若任取,求函數(shù)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)時,求處的切線方程;
(Ⅱ)若對任意的恒成立,求實數(shù)的取值范圍;
(Ⅲ)當(dāng)時,設(shè)函數(shù),若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的極值點;
(2)若上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a為給定的正實數(shù),m為實數(shù),函數(shù)f(x)=ax3-3(m+a)x2+12mx+1.
(Ⅰ)若f(x)在(0,3)上無極值點,求m的值;
(Ⅱ)若存在x0∈(0,3),使得f(x0)是f(x)在[0,3]上的最值,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)),為常數(shù)),是實數(shù)集上的奇函數(shù).
(1)求證:
(2)討論關(guān)于的方程:的根的個數(shù);
(3)設(shè),證明:為自然對數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊答案