【題目】已知函數(shù) .

(1)上為減函數(shù),求的取值范圍;

(2)若關(guān)于的方程內(nèi)有唯一解,求的取值范圍.

【答案】(1) ;(2)

【解析】

(1)根據(jù)復(fù)合函數(shù)的單調(diào)性和對(duì)數(shù)函數(shù)的定義域及二次函數(shù)的單調(diào)性即可求出a的取值范圍,

(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),關(guān)于x的方程f(x)=﹣1+log(x+3)在上僅有一解,轉(zhuǎn)化為上僅有一個(gè)交點(diǎn),即可求出a的取值范圍.

(1)令t=x2﹣2(2a﹣1)x+8>0,

∵y=logt[a,+∞)上為減函數(shù),

t=x2﹣2(2a﹣1)x+8[a,+∞)上為增函數(shù),

∵其對(duì)稱軸為x=2a﹣1,

∴t[2a﹣1,+∞)為增函數(shù),

a≥2a﹣1,且t(a)>0,即a2﹣2(2a﹣1)a+8>0,

解得a≤1或﹣<a<2,

a的取值范圍為(﹣,1];

(2)∵方程f(x)=﹣1+ log(x+3)=log(2x+6),

∴x2﹣2(2a﹣1)x+8=2x+6,∴x2﹣4ax+2=0,

上僅有一個(gè)交點(diǎn).

g(x)=,g(x)(1,上遞減,在(,3)上遞增.

所以g()=,g(1)=3,g(3)=

可得

a的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在120°的二面角α--β的兩個(gè)面內(nèi)分別有點(diǎn)A,B,A∈α,B∈β,A,B到棱l的距離AC,BD分別是2,4,且線段AB=10.

(1)求C,D間的距離;

(2)求直線AB與平面β所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P為橢圓C: =1(a>b>0)的下頂點(diǎn),M,N在橢圓上,若四邊形OPMN為平行四邊形,α為直線ON的傾斜角,若α∈( ],則橢圓C的離心率的取值范圍為( )
A.(0, ]
B.(0, ]
C.[ , ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx= a>0a≠1.

(Ⅰ)求函數(shù)fx)的定義域;

(Ⅱ)判斷函數(shù)fx)的奇偶性,并加以證明;

(Ⅲ)設(shè)a=,解不等式fx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=mlnx﹣x2+2(m∈R).
(1)當(dāng)m=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=1時(shí)取得極大值,求證:f(x)﹣f′(x)≤4x﹣3;
(3)若m≤8,當(dāng)x≥1時(shí),恒有f(x)﹣f′(x)≤4x﹣3恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為,直線與拋物線交于兩點(diǎn),過這兩點(diǎn)分別作拋物線的切線,且這兩條切線相交于點(diǎn).

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點(diǎn)為,點(diǎn)的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點(diǎn)為,且直線與拋物線交于兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在三棱錐P﹣ABC中,PA⊥面ABC,ACBC,且PA=AC=BC=1,點(diǎn)EPC的中點(diǎn),作EFPBPB于點(diǎn)F.

(Ⅰ)求證:PB⊥平面AEF;

(Ⅱ)求二面角A﹣PB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左右焦點(diǎn)分別為F1F2,離心率為,過點(diǎn)F1且垂直于x軸的直線被橢圓截得的弦長(zhǎng)為,直線ly=kx+m與橢圓交于不同的A,B兩點(diǎn).

(Ⅰ)求橢圓C的方程;

)若在橢圓C上存在點(diǎn)Q滿足: O為坐標(biāo)原點(diǎn)).求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸且單位長(zhǎng)度相同的極坐標(biāo)系中曲線C1:ρ=1, (t為參數(shù)).
(Ⅰ)求曲線C1上的點(diǎn)到曲線C2距離的最小值;
(Ⅱ)若把C1上各點(diǎn)的橫坐標(biāo)都擴(kuò)大為原來的2倍,縱坐標(biāo)擴(kuò)大為原來的 倍,得到曲線 .設(shè)P(﹣1,1),曲線C2 交于A,B兩點(diǎn),求|PA|+|PB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案