【題目】在平面直角坐標(biāo)系中,已知點(diǎn) , 在圓上.

(1)求圓的方程;

(2)過點(diǎn)的直線交圓, 兩點(diǎn). 

①若弦長,求直線的方程;

②分別過點(diǎn), 作圓的切線,交于點(diǎn),判斷點(diǎn)在何種圖形上運(yùn)動(dòng),并說明理由.

【答案】12

【解析】試題分析:(1)設(shè)圓的方程為: ,將點(diǎn) , 分別代入圓方程列方程組可解得, , ,從而可得圓的方程;(2)①由(1)得圓的標(biāo)準(zhǔn)方程為,討論兩種情況,當(dāng)直線的斜率存在時(shí),設(shè)為,則的方程為,由弦長,根據(jù)點(diǎn)到直線距離公式列方程求得,從而可得直線的方程;②,利用兩圓公共弦方程求出切點(diǎn)弦方程,將代入切點(diǎn)弦方程,即可得結(jié)果.

試題解析:1)設(shè)圓的方程為: ,由題意可得

解得, ,故圓的方程為

2)由(1)得圓的標(biāo)準(zhǔn)方程為

①當(dāng)直線的斜率不存在時(shí), 的方程是,符合題意;

當(dāng)直線的斜率存在時(shí),設(shè)為,則的方程為,即,

,可得圓心的距離,

,解得,故的方程是,

所以, 的方程是

②設(shè),則切線長,

故以為圓心, 為半徑的圓的方程為,

化簡得圓的方程為: ,

又因?yàn)?/span>的方程為

①化簡得直線的方程為,

代入得: ,

故點(diǎn)在直線上運(yùn)動(dòng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線, 是三個(gè)不同的平面,給出下列四個(gè)命題:

①若,則 ②若,則

③若,則 ④若,則

其中正確命題的序號(hào)是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列不等式:1+ + >1,1+ + +…+ ,1+ + +…+ >2…,則按此規(guī)律可猜想第n個(gè)不等式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若函數(shù)的零點(diǎn)都在區(qū)間內(nèi),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ,(a>0)
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在x=1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增,求a的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)當(dāng)時(shí),證明:函數(shù)的零點(diǎn)與函數(shù)的零點(diǎn)之和小于3;

(2)若對(duì)任意, ,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若

(1)求的值,并寫出函數(shù)的最小正周期(不需證明);

(2)是否存在正整數(shù),使得函數(shù)在區(qū)間內(nèi)恰有個(gè)零點(diǎn)?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的奇函數(shù),當(dāng)時(shí), .

1)求的解析式;

(2)解不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,a∈R,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)﹣b有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

同步練習(xí)冊(cè)答案