【題目】已知動圓過點,且被軸截得的線段長為4,記動圓圓心的軌跡為曲線

1)求曲線的方程;

2)問: 軸上是否存在一定點,使得對于曲線上的任意兩點,當時,恒有的面積之比等于?若存在,則求點的坐標,否則說明理由.

【答案】1;(2)存在,定點.

【解析】試題分析:(1)設動圓圓心的坐標為,由題意可得 ;(2)由

三點共線 的方程:

,由的面積之比等于 平分 此直線的傾斜角互補

存在定點,滿足條件.

試題解析:(1)設動圓圓心的坐標為,由題意可得: ,化為: ,

動圓圓心的軌跡方程為: ......................4

2)設,可知: 三點共線,設直線的方程為: ,代入拋物線方程可得: ,

,由的面積之比等于,可得: 平分,

因此直線的傾斜角互補,

,,

代入可得: ,

,化為: ,由于對于任意都 成立,,

故存在定點,滿足條件...............................12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】方程兩個不等的負根;方程實根.若”為真,“假,求取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù)滿足約束條件:

(1)請畫出可行域,并求的最小值;

(2)若取最大值的最優(yōu)解有無窮多個,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的莖葉圖記錄了甲、乙兩組各5名同學的投籃命中次數(shù),乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中用表示.

(1)若乙組同學投籃命中次數(shù)的平均數(shù)比甲組同學的平均數(shù)少1,求及乙組同學投籃命中次數(shù)的方差;

(2)在(1)的條件下,分別從甲、乙兩組投籃命中次數(shù)低于10次的同學中,各隨機選取一名,求這兩名同學的投籃命中次數(shù)之和為16的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)求的單調區(qū)間和極值;

(2)證明:若存在零點,則在區(qū)間上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線.

(1)若直線與圓交于不同的兩點,且,求的值;

(2)若,是直線上的動點,過作圓的兩條切線,,切點分別為,求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位每天的用電量當天最高氣溫之間具有線性相關關系,下表是該單位隨機統(tǒng)計4天的用電量與當天最高氣溫的數(shù)據(jù).

最高氣溫()

26

29

31

34

用電量 (度)

22

26

34

38

根據(jù)表中數(shù)據(jù)求出回歸直線的方程(其中);

預測某天最高氣溫為33,該單位當天的用電量(精確到1度).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面是邊長為2的等邊三角形, 的中點.

(1)求證: 平面

(2)若四邊形是正方形,且,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶因夏長酷熱多伏旱而得名火爐,八月是重慶最熱、用電量最高的月份.下圖是沙坪壩區(qū)居民八月份用電量(單位:度)的頻率分布直方圖,其分組區(qū)間依次為:,,,,

(1)求直方圖中的

(2)根據(jù)直方圖估計八月份用電量的眾數(shù)和中位數(shù);

(3)在用電量為,,的四組用戶中用分層抽樣的方法抽取11戶居民,則用電量在的用戶應抽取多少戶?

查看答案和解析>>

同步練習冊答案