19.已知函數(shù)數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一個(gè)周期內(nèi)的圖象如圖所示,若已知函數(shù)數(shù)f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,則f(x1+x2)=( 。
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

分析 由圖知A=2,易求T=π,ω=2,由f($\frac{π}{12}$)=2,|φ|<$\frac{π}{2}$,可求得φ=$\frac{π}{3}$,從而可得函數(shù)y=f(x)的解析式,由三角函數(shù)圖象的對(duì)稱性可得x1+x2=$\frac{3π}{2}×2$=3π.繼而得f(x1+x2)的值.

解答 解:由圖象可得A=2,$\frac{3}{4}$T=$\frac{5π}{6}$-$\frac{π}{12}$=$\frac{3π}{4}$,
∴T=π,ω=2.
∴f(x)=2sin(2x+φ),
又f($\frac{π}{12}$)=2,
∴sin(2×$\frac{π}{12}$+φ)=1,
∴$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$(k∈Z),又|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{3}$,
∴f(x)=2sin(2x+$\frac{π}{3}$),
∵函數(shù)數(shù)f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,
∴結(jié)合三角函數(shù)圖象可得:x1+x2=$\frac{3π}{2}×2$=3π,
∴f(x1+x2)=2sin(2×3π+$\frac{π}{3}$)=2sin$\frac{π}{3}$=$\sqrt{3}$.
故選:A.

點(diǎn)評(píng) 本題考查由y=Asin(ωx+φ)的部分圖象確定其解析式,三角函數(shù)的圖象和性質(zhì),求出函數(shù)的解析式是解決問(wèn)題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.甲、乙兩名運(yùn)動(dòng)員進(jìn)行乒乓球單打比賽,根據(jù)以往比賽的勝負(fù)情況知道,每一局甲勝的概率為$\frac{2}{3}$,乙勝的概率為$\frac{1}{3}$.如果比賽采用“五局三勝”制,求甲以3:1獲勝的概率P=$\frac{8}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知如圖,圓C、橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)均經(jīng)過(guò)點(diǎn)M(2,$\sqrt{2}$),圓k的圓心為($\frac{5}{2}$,0),橢圓E的兩焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0)
(Ⅰ)分別求圓C和橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)F1作直線l與圓C交于A、B兩點(diǎn),試探究|F1A|•|F2B|是否為定值?若是定值,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.一袋子中裝有大小相同的白球和黑球共m個(gè),其中有白球4個(gè),若從中任取2個(gè)球,則都是白球的概率為$\frac{1}{6}$,現(xiàn)從袋中不放回的摸球兩次,每次摸出1個(gè)球,則在第一次摸出黑球的條件下,第二次摸出的還是黑球的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{9}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)的圖象與函數(shù)h(x)=$x+\frac{1}{x}$的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=xf(x)+ax,且g(x)在區(qū)間(0,4]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知直線l1∥l2,A是l1,l2之間的一定點(diǎn),并且A點(diǎn)到l1,l2的距離分別為1,2,B是直線l2上一動(dòng)點(diǎn),∠BAC=90°,AC與直線l1交于點(diǎn)C,則△ABC面積的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在等差數(shù)列{an}中,a3+a4=12,公差d=2,則a9=( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見(jiàn)下表:
 租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2 2.4 2 1.9 1.7
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$稱為相應(yīng)于點(diǎn)(xi,yi)的殘差(也叫隨機(jī)誤差);
  租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估計(jì)值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 殘差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估計(jì)值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
殘差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2,并通過(guò)比較Q1,Q2的大小,判斷哪個(gè)模型擬合效果更好.
(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉的時(shí)間(分鐘)[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)
總?cè)藬?shù)203644504010
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否有99%的把握認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo)課外體育達(dá)標(biāo)合計(jì)
20110
合計(jì)
(2)同一個(gè)學(xué)生的跳遠(yuǎn)成績(jī)和短跑100米成績(jī)具有正相關(guān)關(guān)系,下表是從甲班隨機(jī)抽取的5名學(xué)生的跳遠(yuǎn)和短跑100米成績(jī)(都采用百分制),其中x示跳遠(yuǎn)成績(jī),y表示短跑100米成績(jī),請(qǐng)根據(jù)表中的數(shù)據(jù),求y關(guān)于x的線性回歸方程:
學(xué)生的編號(hào)i12345
跳遠(yuǎn)成績(jī)xi8075706560
短跑100米成績(jī)yi7366686162
(參考數(shù)據(jù):$\sum_{i=1}^{5}$xiyi=23235,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=24750).

查看答案和解析>>

同步練習(xí)冊(cè)答案