1.如果對(duì)定義在區(qū)間D上的函數(shù)f(x),對(duì)區(qū)間D內(nèi)任意兩個(gè)不相等的實(shí)數(shù)x1,x2,都有x1f(x1)+x2f(x2)>x${\;}_{{\;}_{1}}$f(x2)+x2f(x1),則稱函數(shù)f(x)為區(qū)間D上的“H函數(shù)”,給出下列函數(shù)及函數(shù)對(duì)應(yīng)的區(qū)間
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R)
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$)
③f(x)=(x+1)e-x,x∈(-∞,1)
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
以上函數(shù)為區(qū)間D上的“H函數(shù)”的序號(hào)是①②(寫出所有正確的序號(hào))

分析 不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等價(jià)為(x1-x2)[f(x1)-f(x2)]>0,即滿足條件的函數(shù)為單調(diào)遞增函數(shù),判斷函數(shù)的單調(diào)性即可得到結(jié)論.

解答 解:∵對(duì)于任意給定的不等實(shí)數(shù)x1,x2,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,
∴不等式等價(jià)為(x1-x2)[f(x1)-f(x2)]>0恒成立,
即函數(shù)f(x)是定義在R上的增函數(shù),
①y=$\frac{1}{3}$x3-$\frac{1}{2}$x2+$\frac{1}{2}$x,(x∈R),
y′=x2-x+$\frac{1}{2}$>0,函數(shù)遞增,
②y=3x+cosx-sinx,x∈(0,$\frac{π}{2}$),
y′=3-sinx-cosx=3-$\sqrt{2}$sin(x+$\frac{π}{4}$)>0,函數(shù)遞增,
③f(x)=(x+1)e-x,x∈(-∞,1),
f′(x)=$\frac{x+2}{{e}^{x}}$,
顯然函數(shù)在(-∞,-2)遞增,在(-2,1)遞減,
④f(x)=xlnx,x∈(0,$\frac{1}{e}$)
f′(x)=lnx+1<0,函數(shù)遞減,
故答案為:①②.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,將條件轉(zhuǎn)化為函數(shù)的單調(diào)性的形式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.把邊長(zhǎng)為1的正方形ABCD沿對(duì)角線BD折起,形成的三棱錐A-BCD的正視圖和俯視圖如圖所示,則其幾何體的表面積為(  )
A.$\frac{2+\sqrt{2}}{2}$B.$\frac{2+\sqrt{3}}{2}$C.1+$\sqrt{2}$D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若關(guān)于x的方程$\frac{lnx}{x}$-a=0(e為自然對(duì)數(shù)的底數(shù))有實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(-∞,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知過(guò)曲線y=(ax+b)ex上的一點(diǎn)P(0,1)的切線方程為2x-y+1=0,則a+b=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知復(fù)數(shù)z滿足z=i(1-i),(i為虛數(shù)單位)則|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知平行四邊形ABCD中,AD=2,∠BAD=60°,$\overrightarrow{AC}+\overrightarrow{AD}=2\overrightarrow{AE}$,$\overrightarrow{AE}•\overrightarrow{BD}=1$,則$\overrightarrow{BD}•\overrightarrow{BE}$=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若X~B(n,$\frac{1}{3}$),且D(X)=$\frac{2}{3}$,則P(0≤X≤2)等于( 。
A.$\frac{1}{9}$B.$\frac{8}{9}$C.$\frac{26}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,則sin(2α$+\frac{31π}{30}$)=( 。
A.$\frac{3}{5}$B.$\frac{7}{25}$C.$\frac{3}{4}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a=0.92,b=20.9,c=log20.9,則a,b,c的大小關(guān)系為( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

同步練習(xí)冊(cè)答案